DOI QR코드

DOI QR Code

Effect of solvent and precursor on the CeO2 nanoparticles fabrication

CeO2 나노 분말 합성에 미치는 용매 및 전구체의 영향

  • Ock, Ji-Young (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Son, Jeong-Hun (School of Nano & Advanced Materials Eng., Changwon National Univ.) ;
  • Bae, Dong-Sik (School of Nano & Advanced Materials Eng., Changwon National Univ.)
  • 옥지영 (창원대학교 신소재공학과) ;
  • 손정훈 (창원대학교 신소재공학과) ;
  • 배동식 (창원대학교 신소재공학과)
  • Received : 2018.04.27
  • Accepted : 2018.06.08
  • Published : 2018.06.30

Abstract

Ceria ($CeO_2$) is a rare earth oxide, which has been widely investigated to improve the property. It is important to increase the surface area of $CeO_2$, because high surface area of $CeO_2$ can improve the catalytic ability. $CeO_2$ nanoparticles were synthesized by a solvothermal process. A discussion on the influence of solvent ratio and precursors on $CeO_2$ nanoparticles was performed. The size and degree of the agglomeration of the synthesized $CeO_2$ could be tuned by controlling those parameters. The average size and distribution of prepared $CeO_2$ powders was in the range of 3 to 13 nm and narrow, respectively. The XRD pattern showed that the synthesized $CeO_2$ powders were crystalline with cubic phase of $CeO_2$. The average particle size was calculated by Scherrer equation and FE-TEM images. The morphology of the synthesized $CeO_2$ particle was objected using FE-TEM and FE-SEM. Specific surface area of the synthesized $CeO_2$ was determined using BET (Brunauer-Emmett-Teller) equation.

Cerium oxide는 촉매의 효율을 증가하기 위해서는 비표면적이 높은 것이 필요하여 많은 연구가 되고 있다. 비표면적이 높은 세리아 나노 입자를 용매열 공정으로 합성하였다. 세리아 입자 형성에 전구체의 종류와 용매의 비율이 미치는 영향에 대하여 연구하였다. 합성된 세리아의 응집 및 크기를 제어할 수 있었다. 합성된 입자의 크기는 약 3~13 nm이고, 분포는 균일하였다. 합성된 세리아의 결정상은 X-선 회절 분석결과 cubic이고, 미세구조는 투과전자현미경과 주사전자현미경으로 분석하였다. 합성된 세리아 입자의 비표면적은 BET로 측정하였다.

Keywords

References

  1. A.B. Stambouli and E. Traversa, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy", Renew Sustain Energy Rev. 6 (2002) 433. https://doi.org/10.1016/S1364-0321(02)00014-X
  2. C. Sun, H. Li, H. Zhang, Z. Wang and L. Chen, "Controlled synthesis of $CeO_2$ nanorods by a solvothermal method", Nanotechnology 16 (2005) 1454. https://doi.org/10.1088/0957-4484/16/9/006
  3. R. Chockalingam, V.R.W. Amarakoon and H. Giesche, "Alumina/cerium oxide nano-composite electrolyte for solid oxide fuel cell applications", J. Eur. Ceram. Soc. 28 (2008) 959. https://doi.org/10.1016/j.jeurceramsoc.2007.09.031
  4. T. Karaca, T.G. Altincekic and M.F. Oksuzomer, "Synthesis of nanocrystalline samarium-doped $CeO_2$ (SDC) powders as a solid electrolyte by using a simple solvothermal route", Ceram. Int. 36 (2010) 1101. https://doi.org/10.1016/j.ceramint.2009.12.005
  5. N. Izu, W. Shin and N. Murayama, "Fast response of resistive-type oxygen gas sensors based on nano-sized ceria powder", Sens. Actuators. B. 93 (2003) 449. https://doi.org/10.1016/S0925-4005(03)00167-9
  6. J.F.D. Lima, R.F. Martins, C.R. Neri and O.A. Serra, "ZnO : $CeO_2$-based nanopowders with low catalytic activity as UV absorbers", Appl. Surf. Sci. 255 (2009) 9006. https://doi.org/10.1016/j.apsusc.2009.06.071
  7. S. Yabe and T. Sato, "Cerium oxide for sunscreen cosmetics", J. Solid State Chem. 171 (2003) 7. https://doi.org/10.1016/S0022-4596(02)00139-1
  8. A. Tsoga, A. Gupta, A. Naoumidis and P. Nikolopoulos, "Gadolinia-doped ceria and yttria stabilized zirconia interfaces: Regarding their application for SOFC technology", Acta Mater. 48 (2000) 4709. https://doi.org/10.1016/S1359-6454(00)00261-5
  9. L.M. Cook, "Chemical processes in glass polishing", J. Non-Cryst. Solids 120 (1990) 152. https://doi.org/10.1016/0022-3093(90)90200-6
  10. G. Kim, "Ceria-promoted three-way catalysts for auto exhaust emission control", Ind. Eng. Chem. Res. 21 (1982) 267. https://doi.org/10.1021/i300006a014
  11. P.W. Park and J.S. Ledford, "Effect of crystallinity on the photoreduction of cerium oxide: A study of $CeO_2$ and Ce/$Al_2O_3$ catalysts", Langmuir 12 (1996) 1794. https://doi.org/10.1021/la950002a
  12. S. Scire, S. Minico, C. Crisafulli, C. Satriano and A. Pistone, "Catalytic combustion of volatile organic compounds on gold/cerium oxide catalysts", Appl. Catal. B 40 (2003) 43. https://doi.org/10.1016/S0926-3373(02)00127-3
  13. N. Phonthammachai, M. Rumruangwong, E. Gulari, A. M. Jamieson, S. Jitkarnka and S. Wongkasemjit, "Synthesis and rheological properties of mesoporous nanocrystalline $CeO_2$ via sol-gel process", Colloids Surf., A 247 (2004) 61. https://doi.org/10.1016/j.colsurfa.2004.08.030
  14. A.V. Thorat, T. Ghoshal, P. Carolan, J.D. Holmes and M.A. Morris, "Defect chemistry and vacancy concentration of luminescent europium doped ceria nanoparticles by the solvothermal method", J. Phys. Chem. C. 118 (2014) 10700. https://doi.org/10.1021/jp410213n
  15. A.G. Macedo, S.E.M. Fernandes, A.A. Valente, R.A.S. Ferreira, L.D. Carlos and J. Rocha, "Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide", Molecules 15 (2010) 747. https://doi.org/10.3390/molecules15020747
  16. F. Zhang, S.W. Chan, J.E. Spanier, E. Apeak, Q. Jin, R.D. Robinson and I.P. Herman, "Cerium oxide nanoparticles: Size-selective formation and structure analysis", Appl. Phys. Lett. 80 (2002) 127. https://doi.org/10.1063/1.1430502
  17. H.I. Chen and H.Y. Chang, "Synthesis of nanocrystalline cerium oxide particles by the precipitation method", Ceram. Int. 31 (2005) 795. https://doi.org/10.1016/j.ceramint.2004.09.006
  18. H.C. Yao and Y.F.Y. Yao, "Ceria in automotive exhaust catalysts", J. Catal. 86 (1984) 254. https://doi.org/10.1016/0021-9517(84)90371-3
  19. E. Aneggi, M. Boaro, C.D. Leitenburg, G. Dolcetti and A. Trovarelli, "Insights into the redox properties of ceria-based oxides and their implications in catalysis", J. Alloys Compd. 408 (2006) 1096.
  20. K. Zhou, X. Wang, X. Sun, Q. Peng and Y. Li, "Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes", J. Catal. 229 (2005) 206. https://doi.org/10.1016/j.jcat.2004.11.004
  21. M.G. Sujana, K.K. Chattopadyay and S. Anand, "Characterization and optical properties of nano-ceria synthesized by surfactant-mediated precipitation technique in mixed solvent system", Appl. Surf. Sci. 254 (2008) 7405. https://doi.org/10.1016/j.apsusc.2008.05.341
  22. S. Gnanam and V. Rajendran, "Synthesis of $CeO_2$ or ${\alpha}$-$Mn_2O_3$ nanoparticles via sol-gel process and their optical properties", J. Sol-Gel Sci. Technol. 58 (2011) 62. https://doi.org/10.1007/s10971-010-2356-9
  23. C.L. Robert, J.W. Long, E.M. Lucas, K.A. Pettigrew, R.N. Stround, M.S. Doescher and D.R. Rolison, "Solgel-derived ceria nanoarchitectures: Synthesis, characterization, and electrical properties", Chem. Mater. 18 (2006) 50. https://doi.org/10.1021/cm051385t
  24. D.J. Guo and Z.H. Jing, "A novel co-precipitation method for preparation of Pt-$CeO_2$ composites on multi-walled carbon nanotubes for direct methanol fuel cells", J. Power Sources 195 (2010) 3802. https://doi.org/10.1016/j.jpowsour.2009.12.115
  25. B. Ksapabutr, E. Gulari and S. Wongkasemjit, "Sol-gel derived porous ceria powders using cerium glycolate complex as precursor", Mater. Chem. Phys. 99 (2006) 318. https://doi.org/10.1016/j.matchemphys.2005.10.030
  26. J. Chandradass, B. Nam and K.H. Kim, "Fine tuning of gadolinium doped ceria electrolyte nanoparticles via reverse microemulsion process", Colloids Surf., A 348 (2009) 130. https://doi.org/10.1016/j.colsurfa.2009.07.012
  27. S.C. Kuiry, S.D. Patil, S. Deshpande and S. Seal, "Spontaneous self-assembly of cerium oxide nanoparticles to nanorods through supraaggregate formation", J. Phys. Chem. B 109 (2005) 6936. https://doi.org/10.1021/jp050675u
  28. M.D.H. Alonso, A.B. Hungria, A.M. Arias, J.M. Coronado, J.C. Conesa, J. Soria and M.F. Garcia, "Confinement effects in quasi-stoichiometric $CeO_2$ nanoparticles", Phys. Chem. Chem. Phys. 6 (2004) 3524. https://doi.org/10.1039/B403202K
  29. K. Yamashita, K.V. Ramanujachary and M. Greenblatt, "Hydrothermal synthesis and low temperature conduction properties of substituted ceria ceramics", Solid State Ionics 81 (1995) 53. https://doi.org/10.1016/0167-2738(95)99031-H
  30. M.S. Kaliszewski and A.H. Heuer, "Alcohol interaction with zirconia powders", J. Am. Ceram. Soc. 73 (1990) 1504. https://doi.org/10.1111/j.1151-2916.1990.tb09787.x
  31. Z. Wang, Z. Quan and J. Lin, "Remarkable changes in the optical properties of $CeO_2$ nanocrystals induced by lanthanide ions doping", Inorg. Chem. 46 (2007) 5237. https://doi.org/10.1021/ic0701256
  32. H.G. Choi, Y.H. Jung and D.K. Kim, "Solvothermal synthesis of tungsten oxide nanorod/nanowire/nanosheet", J. Am. Ceram. Soc. 88 (2005) 1684. https://doi.org/10.1111/j.1551-2916.2005.00341.x
  33. W. Chengyun, Q. Yitai, X. Yi, W. Changsui, Y. Li and Z. Guiwen, "A novel method to prepare nanocrystalline (7 rim) ceria", Mater. Sci. Eng. B 39 (1996) 160. https://doi.org/10.1016/0921-5107(95)01525-6
  34. J.S. Lee and S.C. Choi, "Solvent effect on synthesis of indium tin oxide nano-powders by a solvothermal process", J. Eur. Ceram. Soc. 25 (2005) 3307. https://doi.org/10.1016/j.jeurceramsoc.2004.08.022
  35. C. Wang, Z.X. Deng, G. Zhang, S. Fan and Y. Li, "Synthesis of nanocrystalline $TiO_2$ in alcohols", Powder Technol. 125 (2002) 39. https://doi.org/10.1016/S0032-5910(01)00523-X
  36. S.K.N. Ayudhya, P. Tonto, O. Mekasuwandumrong, V. Pavarajarn and P. Praserthdam, "Solvothermal synthesis of ZnO with various aspect ratios using organic solvents", Cryst. Growth Des. 6 (2006) 2446. https://doi.org/10.1021/cg050345z
  37. R. Si, Y.W. Zhang, L.P. You and C.H. Yan, "Self-organized monolayer of nanosized ceria colloids stabilized by poly(vinylpyrrolidone)", J. Phys. Chem. B 110 (2006) 5994. https://doi.org/10.1021/jp057501x
  38. W. Ren, C. Cheng, Y. Xu, Z. Ren and Y. Zhong, "Surfactant-assisted solvothermal synthesis of single-crystalline ternary Bi-Sb-Te hexagonal nanoplates", J. Alloys Compd. 501 (2010) 120. https://doi.org/10.1016/j.jallcom.2010.04.056
  39. T.X.T. Sayle and D.C. Sayle, "Elastic deformation in ceria nanorods via a fluorite-to-rutile phase transition", ACS Nano 4 (2010) 879. https://doi.org/10.1021/nn901612s
  40. A. Gupta, A. Kumar, M.S. Hegde and U.V. Waghmare, "Structure of $Ce_{1-x}Sn_xO_2$ and its relation to oxygen storage property from first-principles analysis", J. Chem. Phys. 132 (2010) 194702. https://doi.org/10.1063/1.3425662
  41. V. Shapovalov and H. Metiu, "$VO_x$ (x = 1-4) submonolayers supported on rutile $TiO_2(110)$ and $CeO_2(111)$ surfaces: The structure, the charge of the atoms, the XPS spectrum, and the equilibrium composition in the presence of oxygen", J. Phys. Chem. C 111 (2007) 14179. https://doi.org/10.1021/jp074481l
  42. H.I. Chen and H.Y. Chang, "Synthesis and characterization of nanocrystalline cerium oxide powders by two-stage non-isothermal precipitation", Solid State Comm. 133 (2005) 593. https://doi.org/10.1016/j.ssc.2004.12.020
  43. V.K. Ivanov, A.B. Shcherbakov and A.V. Usatenko, "Structure-sensitive properties and biomedical applications of nanodispersed cerium dioxide", Russ. Chem. Rev. 78 (2009) 855. https://doi.org/10.1070/RC2009v078n09ABEH004058