DOI QR코드

DOI QR Code

Effect of VI/III ratio on properties of alpha-Ga2O3 epilayers grown by halide vapor phase epitaxy

HVPE 방법으로 성장된 alpha-Ga2O3의 특성에 대한 VI/III ratio 변화 효과

  • Son, Hoki (Korea Institute of Ceramic Engineering & Technology) ;
  • Choi, Ye-Ji (Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Young-Jin (Korea Institute of Ceramic Engineering & Technology) ;
  • Lee, Mi-Jai (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Jin-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Kim, Sun Woog (Korea Institute of Ceramic Engineering & Technology) ;
  • Ra, Yong-Ho (Korea Institute of Ceramic Engineering & Technology) ;
  • Lim, Tae-Young (Korea Institute of Ceramic Engineering & Technology) ;
  • Hwang, Jonghee (Korea Institute of Ceramic Engineering & Technology) ;
  • Jeon, Dae-Woo (Korea Institute of Ceramic Engineering & Technology)
  • Received : 2018.06.08
  • Accepted : 2018.06.12
  • Published : 2018.06.30

Abstract

In this study, we report the effect of VI/III ratio on ${\alpha}-Ga_2O_3$ epilayer on sapphire substrate by halide vapor phase epitaxy. The surface of ${\alpha}-Ga_2O_3$ epilayer grown with various VI/III ratios was flat and crack-free. To analyze the optical properties of the ${\alpha}-Ga_2O_3$ epilayers, the transmittance and an optical band gap were measured. The optical band gap was shown to be around 5 eV and showed a proportional increase in VI/III ratios. To determine the crystal quality of alpha gallium oxide grown with a ratio of 23, closed to the theoretical optical band gap, the FWHM was measured by HR-XRD. The calculated dislocation density of screw and edge were $1.5{\times}10^7cm^{-2}$ and $5.4{\times}10^9cm^{-2}$, respectively.

본 연구에서는 HVPE 성장법을 이용하여 사파이어 기판 위에 알파 갈륨옥사이드를 성장시키며 VI/III 비의 변화에 따른 효과를 확인하였다. 성장된 알파 갈륨옥사이드의 표면은 평평하고 crack 없이 성장되었다. 성장된 갈륨옥사이드의 광학적 특성을 분석하기 위해 투과율을 측정하고 광학 밴드갭을 얻었다. 광학 밴드갭은 약 5.0 eV로 나타났고 VI/III 비가 증가함에 따라 비례하여 증가하는 결과를 보여주었다. 이론적 광학 밴드갭에 가장 근접한 VI/III 비가 23인 조건에서 성장된 알파 갈륨옥사이드의 결정성을 확인하기 위해 HR-XRD를 이용하여 FWHM을 측정하였고 이를 바탕으로 전위밀도를 계산하였을 때 나선형 전위밀도는 $1.5{\times}10^7cm^{-2}$, 칼날 전위 밀도는 $5.4{\times}10^9cm^{-2}$로 계산되었다.

Keywords

References

  1. J.Y. Taso, S. Chowdhury, M.A. Hollis, D. Jena, N.M. Jhonson, K.A. Jones, R.J. Kaplar, S. Rajan, C.G. Vandewalle, E. Bellotii, C.L. Chua, R. Collazo, M.E. Coltrin, J.A. Cooper, K.R. Evans, S. Graham, T.A. Grotjohn, E.R. Heller, M. Higashiwaki, M.S. Islam, P.W Juodawlkis, M.A. Khan, A.D. Koehler, J.H. Leach, U.K. Mishra, R.J. Nemanich, R.C. Pilawa-podgurski, J.B. Shealy, Z. Sitar, M.J. Tadjer, A.F. Witulski, M. Wraback and J.A. Simmons, "Ultrawide-bandgap semiconductors: research opportunities and challenges", Adv. Electron. Mater. 1600501 (2017) 1.
  2. S.J. Pearton, J. Yang, P.H. Cary, F. Ren, J.H Kim, M.J. Tadjer and M.A. Mastro, "A review of $Ga_2O_3$ material, processing, and devices", Appl. Phys. Rev. 5 (2018) 011301. https://doi.org/10.1063/1.5006941
  3. A.M. Michael, A. Kuramata, J. Calkins, J.H. Kim, R. Fan and S.J. Pearton, "Oppotunities and future directions for $Ga_2O_3$", ECS J. Solid State Sci. Technol. 6 (2017) 356. https://doi.org/10.1149/2.0031707jss
  4. M. Higashiwaki, K. Sasaki, T. Kamimura, M.H. Wong, D. Krishnamurthym, A. Kuramata, T. Masui and S.Y. Yamakoshi, "Depletion-mode $Ga_2O_3$ metal-oxide-semiconductor field-effect transistors on ${\beta}$-$Ga_2O_3$ (010) substrates and temperature dependence of their device characteristics", Appl. Phys. Lett. 103 (2013) 123511. https://doi.org/10.1063/1.4821858
  5. S.C. Vanithakumari and K.K. Nanda, "A one-step method for the growth of $Ga_2O_3$-nanorod-based white-light-emitting phosphors", Adv. Mater. 21 (2009) 3581. https://doi.org/10.1002/adma.200900072
  6. D.Y. Guo, Z.P. Wu, P.G. Li, Y.H. An, H. Liu, X.C. Guo, H. Yan, G.F. Wang, C.L. Sun, L.H. Li and W.H. Tang, "Fabrication of ${\beta}$-$Ga_2O_3$ thin films and solar-blind photodetectors by laser MBE technology", Opt. Mater. Express. 4 (2014) 1067. https://doi.org/10.1364/OME.4.001067
  7. C. Jin, S. Park, H. Kim and C. Lee, "Ultrasensitive multiple networked $Ga_2O_3$-core/ZnO-shell nanorod gas sensors", Sens. Actuators B. 161 (2012) 223. https://doi.org/10.1016/j.snb.2011.10.023
  8. K. Sasaki, A. Kuramata, T. Masui, E.G. Villora, K. Shimamura and S. Yamakoshi. "Device-quality ${\beta}$-$Ga_2O_3$ epitaxial films fabricated by ozone molecular beam epitaxy", Appl. Phys. Express. 5 (2012) 035502. https://doi.org/10.1143/APEX.5.035502
  9. T.N. Adam, M. Shin, L. Roberto, J.V. Li, D.B. Thomson, K.D. Chabak and G.H. Jessen, "Incomplete ionization of a 110meV unintentional donor in ${\beta}$-$Ga_2O_3$ and its effect on power devices", Sci. Rep. 7 (2017) 13218. https://doi.org/10.1038/s41598-017-13656-x
  10. W.Y. Kong, G.A Wu, K.Y. Wang, T.F. Zhang, Y.F. Zou, D.D Wang and L.B Luo, "Graphene-${\beta}$-$Ga_2O_3$ heterojuntion for highly sensitive deep uv photodetector application", Adv. Mater. 28 (2016) 10725. https://doi.org/10.1002/adma.201604049
  11. M. Lena, N.P. Yoosuf, I.M. Seruei, F.K. Perkins, E.R. Glaser, M.E. Twigg, J.A. Freitas and S.M. Prokes, "Growth of Sn-doped ${\beta}$-$Ga_2O_3$ nanowires and $Ga_2O_3$-$SnO_2$ heterostructures for gas sensing applications", Cryst. Growth Des. 9 (2009) 4471. https://doi.org/10.1021/cg900499c
  12. S. Fujita, M. Oda, K. Kaneko and T. Hitora, "Evolution of corundum-structured III-oxide semiconductors: Growth, properties, and devices", Jpn. J. Appl. Phys. 55 (2016) 1202A3. https://doi.org/10.7567/JJAP.55.1202A3
  13. K. Akaiwa, K. Kaneko, K. Ichino and S. Fujita, "Conductivity control of Sn-doped ${\alpha}$-$Ga_2O_3$ thin films grown on sapphire substrate", Jpn. J. Appl. Phys. 55 (2016) 1202BA. https://doi.org/10.7567/JJAP.55.1202BA
  14. Y. Yao, S. Okur, A.M. Lyle, G.S. Tompa, T. Salagaj, N. Sbrokey, R.F. Davis and L.M. Porter, "Growth and characterization of ${\alpha}$-, ${\beta}$-, and ${\varepsilon}$-phases of $Ga_2O_3$ using MOCVD and HVPE techniques", Mater. Res. Lett. 6 (2018) 268. https://doi.org/10.1080/21663831.2018.1443978
  15. F. Mezzadri, G. Calestani and F. Boschi, "Crystal structure and ferroelectric properties of ${\varepsilon}$-$Ga_2O_3$ films grown on (0001)-sapphire", Inorg. Chem. 55 (2016) 12079. https://doi.org/10.1021/acs.inorgchem.6b02244
  16. T. Oshima, T. Okuno and S. Fujita, "$Ga_2O_3$ thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors", Jpn. J. Appl. Phys. 46 (2007) 7217. https://doi.org/10.1143/JJAP.46.7217
  17. B. Zhou, A.V. Rogachev, Z. Liu, D.G. Piliptsou, H. Ji and X. Jiang, "Effects of oxygen/argon ratio and annealing on structural and optical properties of ZnO thin films", Appl. Surf. Sci. 258 (2012) 5759. https://doi.org/10.1016/j.apsusc.2012.02.088
  18. Y. Oshima, E.G. Villora and K. Shimamura, "Halide vapor phase epitaxy of twin-free ${\alpha}$-$Ga_2O_3$ on sapphire (0001) substrate", Appl. Phys. Express. 8 (2015) 055501. https://doi.org/10.7567/APEX.8.055501
  19. Y. Chen, H. Song, D. Li, X. Sun, H. Jiang, Z. Li, G. Miao, Z. Zhang and Y. Zhou, "Influence of the growth temperature of AlN nucleation layer on AlN template grown by high-temperature MOCVD", Mater. Lett. 114 (2014) 26. https://doi.org/10.1016/j.matlet.2013.09.096