DOI QR코드

DOI QR Code

Surveillance of Acanthamoeba spp. and Naegleria fowleri in environmental water by using the duplex real-time PCR

Duplex real-time PCR을 이용한 수계 중 가시아메바와 파울러자유아메바 조사

  • 김민정 (한국수자원공사 수질연구센터) ;
  • 이규철 (한국수자원공사 수질연구센터) ;
  • 김건우 (한국수자원공사 수질연구센터) ;
  • 이현지 (한국수자원공사 수질연구센터) ;
  • 김민영 (한국수자원공사 수질연구센터) ;
  • 서대근 (한국수자원공사 수돗물품질부) ;
  • 이정엽 (한국수자원공사 수질연구센터) ;
  • 조영철 (충북대학교 환경공학과)
  • Received : 2018.03.23
  • Accepted : 2018.04.04
  • Published : 2018.06.30

Abstract

Naegleria fowleri and Acanthamoeba spp. are free-living amoebas that are widely distributed in natural environments. Although uncommon, infection with these protozoans can cause fatal disease in humans and animals. In this study, in order to select the appropriate method to survey Naegleria fowleri and Acanthamoeba spp. in water samples, four molecular biology techniques and one commercially available kit for real-time PCR were compared. The results indicated that the duplex real-time PCR was the most sensitive, and could be used to simultaneously detect two different free-living amoebas. Using the duplex real-time PCR approach, the two free-living amoebas were surveyed in three local streams in Daejeon, Republic of Korea. The concentrated free-living amoebas were inoculated onto non-nutrient agar plates which had been spread with heat-inactivated Escherichia coli and incubated for 5~7 days. After incubation, gDNA was extracted and used as the template for amplification by duplex real-time PCR. Acanthamoeba spp. and N. fowleri was detected from ten (83.3%) and two (16.6%) of the twelve samples, respectively. As these two free-living amoebas can be fatal, continuous surveillance is needed to track their distribution in the aquatic environment for the drinking water safety.

가시아메바(Acanthamoeba spp.)와 파울러자유아메바(Naegleria fowleri)는 자유생활아메바로 자연계에 널리 분포하며 사람과 동물에게 치명적인 질병을 일으킨다. 본 연구에서는 가사아메바와 파울러자유아메바를 물 환경에서 조사하기 위해 기존에 보고된 네 종류의 분자생물학적 방법과 상용 real-time PCR 키트의 분석 민감도를 비교하였다. 그 결과 duplex real-time PCR 방법이 민감도가 가장 좋았으며, 동시에 두 종류의 자유생활아메바를 검출할 수 있었다. 따라서 이 방법을 사용하여 한국의 대전시에 위치한 3개 하천, 6개 지점을 대상으로 그 분포를 2회 조사하였다. 가시아메바는 12개 시료 중 10개 시료에서 검출되었으며(83.3%), 파울러자유아메바는 2개 시료에서 검출되었다(16.6%). 향후 이러한 유해 아메바로부터 먹는 물의 안전성을 확보하기 위해 지속적인 분포조사가 필요할 것이다.

Keywords

References

  1. Awwad, S.T., Petroll, W.M., McCulley, J.P., and Cavanagh, H.D. 2007. Updates in Acanthamoeba keratitis. Eye Contact Lens 33, 1-8. https://doi.org/10.1097/ICL.0b013e31802b64c1
  2. Cursons, R.T., Brown, T.J., and Keys, E.A. 1980. Effect of disinfectants on pahtogenic free-living amoebae: in axenic conditions. Appl. Environ. Microbiol. 40, 62-66.
  3. da Rocha-Azevedo, B., Tanowitz, H.B., and Marciano-Cabral, F. 2009. Diagnosis of infections caused by pathogenic free-living amoebae. Interdiscip. Perspect. Infect. Dis. 2009, 251406.
  4. De Jonckheere, J.F. 2004. Molecular definition and the ubiquity of species in the genus Naegleria. Protist 155, 89-103. https://doi.org/10.1078/1434461000167
  5. De Jonckheere, J.F. 2012. The impact of man on the occurrence of the pathogenic free-living amoeboflagellate Naegleria fowleri. Future Microbiol. 7, 5-7. https://doi.org/10.2217/fmb.11.141
  6. De Jonckheere, J. and van de Voorde, H. 1976. Differences in destruction of cysts of pathogenic and nonpathogenic Naegleria and Acanthamoeba by chlorine. Appl. Environ. Microbiol. 31, 294-297.
  7. Denoncourt, A.M., Paquet, V.E., and Charette, S.J. 2014. Potential role of bacteria packaging by protozoa in the persistence and transmission of pathogenic bacteria. Front. Microbiol. 5, 240.
  8. Derda, M., Wojtkowiak-Giera, A., and Hadas, E. 2014. Comparative analyses of different genetic markers for the detection of Acanthamoeba spp. isolates. Acta Parasitol. 59, 472-477.
  9. Greub, G. and Raoult, D. 2004. Microorganisms resistant to free-living amoebae. Clin. Microbiol. Rev. 17, 413-433. https://doi.org/10.1128/CMR.17.2.413-433.2004
  10. Im, K. and Kim, D.S. 1998. Acanthamoebiasis in Korea: two new cases with clinical cases review. Yonsei Med. J. 39, 478-484. https://doi.org/10.3349/ymj.1998.39.5.478
  11. Jeong, H.J. and Yu, H.S. 2005. The role of domestic tap water in Acanthamoeba contamination in contact lens storage cases in Korea. Korean J. Parasitol. 43, 47-50. https://doi.org/10.3347/kjp.2005.43.2.47
  12. Jung, E.Y., Jung, M.E., Park, H.G., Jung, J.M., Rho, J.S., and Ryu, P.J. 2008. Distribution of Acanthamoeba spp. in raw water and water treatment process. J. Environ. Sci. 17, 1121-1127.
  13. Kim, J.H., Kim, D., and Shin, H.J. 2008. Contact-independent cell death of human microglial cells due to pathogenic Naegleria fowleri trophozoites. Korean J. Parasitol. 46, 217-221. https://doi.org/10.3347/kjp.2008.46.4.217
  14. Lee, Y.J., Park, C.E., Kim, J.H., Sohn, H.J., Lee, J.L., Jung, S.Y., and Shin, H.J. 2011. Naegleria fowleri lysate induces strong cytopathic effects and pro-inflammatory cytokine release in rat microglial cells. Korean J. Parasitol. 49, 285-290. https://doi.org/10.3347/kjp.2011.49.3.285
  15. Madarova, L., TrnKova, K., Feikova, S., Klement, C., and Obernauerova, M. 2010. A real-time PCR diagnostic method for detection of Naegleria fowleri. Exp. Parasitol. 126, 37-41. https://doi.org/10.1016/j.exppara.2009.11.001
  16. Mahittikorn, A., Mori, H., Popruk, S., Roobthaisong, A., Sutthikornchai, C., Koompapong, K., Siri, S., Sukthana, Y., and Nacapunchai, D. 2015. Development of a rapid, simple method for detecting Naegleria fowleri visually in water samples by loop-mediated isothermal amplification (LAMP). PLoS One 10, e0120997. https://doi.org/10.1371/journal.pone.0120997
  17. Marciano-Cabral, F. and Cabral, G. 2003. Acanthamoeba spp. as agents of disease in humans. Clin. Microbiol. Rev. 16, 273-307. https://doi.org/10.1128/CMR.16.2.273-307.2003
  18. Marciano-Cabral, F., MacLean, R., Mensah, A., and LaPat-Polasko, L. 2003. Identification of Naegleria fowleri in domestic water sources by nested PCR. Appl. Environ. Microbiol. 69, 5864-5869. https://doi.org/10.1128/AEM.69.10.5864-5869.2003
  19. Martinez, A.J. and Visvesvara, G.S. 1997. Free-living, amphizoic and opportunistic amebas. Brain Pathol. 7, 583-598. https://doi.org/10.1111/j.1750-3639.1997.tb01076.x
  20. Mathers, M.D., Nelson, S.E., Lane, J.L., Wilson, M.E., Allen, R.C., and Folberg, R. 2000. Confirmation of confocal microscopy diagnosis of Acanthamoeba keratitis using polymerase chain reaction analysis. Arch. Ophthalmol. 118, 178-183. https://doi.org/10.1001/archopht.118.2.178
  21. Moon, E.K., Park, H.R., Quan, F.S., and Kong, H.H. 2016. Efficacy of Korean multipurpose contact lens disinfecting solutions against Acanthamoeba castellanii. Korean J. Parasitol. 54, 697-702. https://doi.org/10.3347/kjp.2016.54.6.697
  22. Qvarnstrom, Y., Visversvara, G.S., Sriram, R., and da Silva, A.J. 2006. Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri. J. Clin. Microbiol. 44, 3589-3595. https://doi.org/10.1128/JCM.00875-06
  23. Reveiller, F.L., Cabanes, P.A., and Marciano-Cabral, F. 2003 Development of a nested PCR assay to detect the pathogenic free-living amoeba Naegleria fowleri. Parasitol. Res. 88, 443-450.
  24. Richards, A.M., Von Dwingelo, J.E., Price, C.T., and Kwaik, Y.A. 2013. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 4, 307-314. https://doi.org/10.4161/viru.24290
  25. Sarkar, P. and Gerba, C.P. 2012. Inactivation of Naegleria fowleri by chlorine and ultraviolet light. J. Am. Water Works Assoc. 104, E173-E180. https://doi.org/10.5942/jawwa.2012.104.0041
  26. Schroeder, J.M., Booton, G.C., Hay, J., Niszl, I.A., Seal, D.V., Markus, M.B., Fuerst, P.A., and Byers, T.J. 2001. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoeba from humans with keratitis and from sewage sludge. J. Clin. Microbiol. 39, 1903-1911. https://doi.org/10.1128/JCM.39.5.1903-1911.2001
  27. Schuster, F.L. and Visvesvara, G.S. 2004. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int. J. Parasitol. 34, 1001-1027. https://doi.org/10.1016/j.ijpara.2004.06.004
  28. Seal, D.V. and Hay, J. 1994. Acanthamoeba keratitis. BMJ 309, 1019.
  29. Siddiqui, R. and Khan, N.A. 2012. Biology and pathogenesis of Acanthamoeba. Parasit. Vectors 5, 6. https://doi.org/10.1186/1756-3305-5-6
  30. Thomas, V., Bouchez, T., Nicolas, V., Robert, S.l., Loret, J.F., and Levi, Y. 2004. Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. J. Appl. Microbiol. 97, 950-963. https://doi.org/10.1111/j.1365-2672.2004.02391.x
  31. Thomas, V., McDonnell, G., Denyer, S.P., and Maillard, J.Y. 2010. Free-living amoebae and their intracellular pathogenic microorganisms: risks for water quality. FEMS Microbiol. Rev. 34, 231-259. https://doi.org/10.1111/j.1574-6976.2009.00190.x
  32. Visvesvara, G.S., Moura, H., and Schuster, F.L. 2007. Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia Mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunol. Med. Microbiol. 50, 1-26. https://doi.org/10.1111/j.1574-695X.2007.00232.x
  33. Yang, H.W., Lee, Y.R., Inoue, N., Jha, B.K., Danne, D.B., Kim, H.K., Lee, J., Goo, Y.K., Kong, H.H., Chung, D.I., et al. 2013. Loop-mediated isothermal amplification targeting 18S ribosomal DNA for rapid detection of Acanthamoeba. Korean J. Parasitol. 51, 269-277. https://doi.org/10.3347/kjp.2013.51.3.269

Cited by

  1. A systematic literature review and meta‐analysis on the global prevalence of Naegleria spp. in water sources vol.67, pp.6, 2018, https://doi.org/10.1111/tbed.13635