DOI QR코드

DOI QR Code

Gene cloning of β-mannanase C from Cellulosimicrobium sp. YB-43 and characterization of the enzyme

Cellulosimicrobium sp. YB-43으로부터 mannanase C 유전자의 클로닝과 효소 특성

  • Yoon, Ki-Hong (Food Science and Biotechnology Major, Woosong University)
  • 윤기홍 (우송대학교 바이오식품과학전공)
  • Received : 2018.04.26
  • Accepted : 2018.06.04
  • Published : 2018.06.30

Abstract

The characteristics of enzyme and gene for mannanase B had been reported from Cellulosimicrobium sp. YB-43 producing some kind of mannanase. A gene coding for the enzyme, named mannanase C (ManC), was expected to be located downstream of the manB gene. The manC gene was cloned by polymerase chain reaction and sequenced completely. From this nucleotide sequence, ManC was identified to consist of 448 amino residues and contain a carbohydrate binding domain CBM2 besides a catalytic domain, which was homologous to mannanase belonging to the glycosyl hydrolase family 5. The catalytic domain of ManC showed the highest amino acid sequence similarity of 55% with the mannanases from Streptomyces sp. SirexAA-E (55.8%; 4FK9_A) and S. thermoluteus (57.6%; BAM62868). The His-tagged ManC (HtManC) lacking N-terminal signal peptide with hexahistidine at C-terminus was produced and purified from cell extract of recombinant Escherichia coli. The purified HtManC showed maximal activity at $65^{\circ}C$ and pH 7.5, with no significant change in its activity at pH range from 7.5 to 10. HtManC showed more active on konjac and locust bean gum (LBG) than guar gum and ivory nut mannan (ivory nut). Vmax and Km values of the HtManC for LBG were 68 U/mg and 0.45 mg/ml on the optimal condition, respectively. Mannobiose and mannotriose were observed on TLC as major products resulting from the HtManC hydrolysis of mannooligosacharides. In addition, mannobiose and mannose were commonly detected as the hydrolyzed products of LBG, konjac and ivory nut.

여러 종류의 mannanase를 생산하는 Cellulosimicrobium sp. YB-43으로부터 mannanase B를 암호하는 manB 유전자와 효소의 특성이 보고된 바 있다. Mannanase C (ManC)로 명명한 효소의 유전자가 manB 유전자의 하류에 위치한 것으로 예상되어 이를 중합효소 연쇄반응으로 클로닝하여 manC 유전자의 염기서열을 결정하였다. ManC는 448 아미노산 잔기로 구성된 것으로 확인되었으며 glycosyl hydrolase family 5에 속하는 mannanase와 상동성이 높은 활성영역과 탄수화물 결합영역(CBM2)이 존재하였다. ManC의 활성영역은 Streptomyces sp. SirexAA-E (55.8%; 4FK9_A) 및 S. thermoluteus (57.6%; BAM62868)의 mannanase와 아미노산 배열의 상동성이 55% 이상으로 가장 높았다. Signal peptide 영역이 제거되고 카르복실 말단에 hexahistidine이 연결되도록 제조한 His-tagged ManC (HtManC)의 유전자를 재조합 대장균에서 발현하여 균체 파쇄액으로부터 HtManC를 정제하였다. HtManC은 $65^{\circ}C$와 pH 7.5에서 최대 활성을 보였으며 pH 7.5~10범위에서 활성에 큰 변화가 없었다. HtManC는 locust bean gum (LBG)과 konjac에 대한 분해 활성이 guar gum과 ivory nut mannan (ivory nut)에 비해 높았다. 최적 반응조건에서 LBG를 기질로 하여 반응 동력학적 계수를 측정한 결과 Vmax와 Km이 68 U/mg과 0.45 mg/ml로 나타났다. HtManC에 의한 만노올리고당(MOS)과 mannan의 분해산물을 TLC로 관찰한 결과 mannobiose 보다 중합도가 큰MOS로부터 mannobiose와 mannotriose가 주된 분해산물로 생성되었다. 또한 LBG, konjac과 ivory nut의 분해산물로 mannobiose와 소량이 mannose가 공통적으로 관찰되었다.

Keywords

References

  1. Arcand, N., Kluepfel, D., Paradis, F.W., Morosoli, R., and Shareck, F. 1993. $\beta$-Mannanase of Streptomyces lividans 66: cloning and DNA sequence of the manA gene and characterization of the enzyme. Biochem. J. 290, 857-863. https://doi.org/10.1042/bj2900857
  2. Dhawan, S. and Kaur, J. 2007. Microbial mannanases: an overview of production and applications. Crit. Res. Biotechnol. 27, 197-216. https://doi.org/10.1080/07388550701775919
  3. Ferreira, H.M. and Filho, E.X.F. 2004. Purification and characterization of a $\beta$-mannanase from Trichoderma harzianum strain T4. Carbohydr. Polym. 57, 23-29. https://doi.org/10.1016/j.carbpol.2004.02.010
  4. Hilge, M., Gloor, S.M., Rypniewski, W., Sauer, O., Heightman, T.D., Zimmermann, W., Winterhalter, K., and Piontek, K. 1998. High-resolution native and complex structures of thermostable $\beta$-mannanase from Thermomonospora fusca - substrate specificity in glycosyl hydrolase family 5. Structure 6, 1433-1444. https://doi.org/10.1016/S0969-2126(98)00142-7
  5. Kim, D.Y., Ham, S.J., Lee, H.J., Cho, H.Y., Kim, J.H., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011a. Cloning and characterization of a modular GH5 $\beta$-1,4-mannanase with high specific activity from the fibrolytic bacterium Cellulosimicrobium sp. strain HY-13. Bioresour. Technol. 102, 9185-9192. https://doi.org/10.1016/j.biortech.2011.06.073
  6. Kim, D.Y., Ham, S.J., Lee, H.J., Kim, Y.J., Shin, D.H., Rhee, Y.H., Son, K.H., and Park, H.Y. 2011b. A highly active endo-$\beta$-1,4-mannanase produced by Cellulosimicrobium sp. strain HY-13, a hemicellulolytic bacterium in the gut of Eisenia fetida. Enzyme Microb. Technol. 48, 365-370. https://doi.org/10.1016/j.enzmictec.2010.12.013
  7. Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M., and Hatanaka, T. 2012. The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie 94, 2783-2790. https://doi.org/10.1016/j.biochi.2012.09.012
  8. Kumagai, Y., Kawakami, K., Uraji, M., and Hatanaka, T. 2013a. Binding of bivalent ions to actinomycete mannanase is accompanied by conformational change and is a key factor in its thermal stability. Biochim. Biophys. Acta 1834, 301-307. https://doi.org/10.1016/j.bbapap.2012.08.011
  9. Kumagai, Y., Kawakami, K., Uraji, M., and Hatanaka, T. 2013b. Effect of the binding of bivalent ion to the calcium-binding site responsible for the thermal stability of actinomycete mannanase: Potential use in production of functional mannooligosaccharides. J. Mol. Cataly. B: Enzym. 94, 63-68. https://doi.org/10.1016/j.molcatb.2013.05.001
  10. Kumagai, Y., Usuki, H., Yamamoto, Y., Yamasato, A., Arima, J., Mukaihara, T., and Hatanaka, T. 2011. Characterization of calcium ion sensitive region for $\beta$-mannanase from Streptomyces thermolilacinus. Biochim. Biophys. Acta 1814, 1127-1133. https://doi.org/10.1016/j.bbapap.2011.04.017
  11. Kweun, M.A., Lee, M.S., Choi, J.H., Cho, K.H., and Yoon, K.H. 2004. Cloning of a Bacillus subtilis WL-7 mannanase gene and characterization of the gene product. J. Microbiol. Biotechnol. 14, 1295-1302.
  12. Moore, B.M. and Flurkey, W.H. 1990. Sodium dodecyl sulfate activation of a plant polyphenoloxidase. Effect of sodium dodecyl sulfate on enzymatic and physical characteristics of purified broad bean polyphenoloxidase. J. Biol. Chem. 265, 4982-4988.
  13. Oda, M., Inaba, S., Kamiya, N., Bekker, G.J., and Mikami, B. 2018. Structural and thermodynamic characterization of endo-1,3-$\beta$-glucanase: Insights into the substrate recognition mechanism. Biochim. Biophys. Acta 1866, 415-425. https://doi.org/10.1016/j.bbapap.2017.12.004
  14. Pradeep, G.C., Cho, S.S., Choi, Y.H., Choi, Y.S., Jee, J.P., Seong, C.N., and Yoo, J.C. 2016. An extremely alkaline mannanase from Streptomyces sp. CS428 hydrolyzes galactomannan producing series of mannooligosaccharides. World J. Microbiol. Biotechnol. 32, 84. https://doi.org/10.1007/s11274-016-2040-5
  15. Schumann, P., Weiss, N., and Stackebrandt, E. 2001. Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 51, 1007-1010. https://doi.org/10.1099/00207713-51-3-1007
  16. Shi, P., Yuan, T., Zhao, J., Huang, H., Luo, H., Meng, K., Wang, Y., and Yao, B. 2011. Genetic and biochemical characterization of a protease-resistant mesophilic $\beta$-mannanase from Streptomyces sp. S27. J. Ind. Microbiol. Biotechnol. 38, 451-458. https://doi.org/10.1007/s10295-010-0789-3
  17. Srivastava, P.K. and Kapoor, M. 2017. Production, properties, and applications of endo-$\beta$-mannanases. Biotechnol. Adv. 35, 1-19. https://doi.org/10.1016/j.biotechadv.2016.11.001
  18. Stoll, D., Stalbrand, H., and Warren, R.A. 1999. Mannan-degrading enzymes from Cellulomonas fimi. Appl. Environ. Microbiol. 65, 2598-2605.
  19. Takasuka, T.E., Acheson, J.F., Bianchetti, C.M., Prom, B.M., Bergeman, L.F., Book, A.J., Currie, C.R., and Fox, B.G. 2014. Biochemical properties and atomic resolution structure of a proteolytically processed beta-mannanase from cellulolytic Streptomyces sp. SirexAA-E. PLoS One 9, e94166. https://doi.org/10.1371/journal.pone.0094166
  20. Tjalsma, H. and van Dijl, J.M. 2005. Proteomics-based consensus prediction of protein retention in a bacterial membrane. Proteomics 5, 4472-4482. https://doi.org/10.1002/pmic.200402080
  21. Vijayalaxmi, S., Prakash, P., Jayalakshmi, S.K., Mulimani, V.H., and Sreeramulu, K. 2013. Production of extremely alkaliphilic, halotolerent, detergent, and thermostable mannanase by the free and immobilized cells of Bacillus halodurans PPKS-2. Purification and characterization. Appl. Biochem. Biotechnol. 171, 382-395. https://doi.org/10.1007/s12010-013-0333-9
  22. Walia, A., Mehta, P., Guleria, S., and Shirkot, C.K. 2015. Modification in the properties of paper by using cellulase-free xylanase produced from alkalophilic Cellulosimicrobium cellulans CKMX1 in biobleaching of wheat straw pulp. Can. J. Microbiol. 61, 671-681. https://doi.org/10.1139/cjm-2015-0178
  23. Yoo, H.Y., Pradeep, G.C., Lee, S.K., Park, D.H., Cho, S.S., Choi, Y.H., Yoo, J.C., and Kim, S.W. 2015. Understanding $\beta$-mannanase from Streptomyces sp. CS147 and its potential application in lignocellulose based biorefining. Biotechnol. J. 10, 1894-1902. https://doi.org/10.1002/biot.201500150
  24. Yoon, K.H. 2015. Characterization of two $\beta$-mannanases from Cellulosimicrobium sp. YB-43. Korean J. Microbiol. 51, 263-270. https://doi.org/10.7845/kjm.2015.5032
  25. Yoon, K.H. 2016. Molecular cloning and characterization of $\beta$-mannanase B from Cellulosimicrobium sp. YB-43. Korean J. Microbiol. 52, 336-343. https://doi.org/10.7845/kjm.2016.6045
  26. Zhang, J.X., Chen, Z.T., Meng, X.L., Mu, G.Y., Hu, W.B., Zhao, J., and Nie, G.X. 2017. Gene cloning, expression, and characterization of a novel $\beta$-mannanase from the endophyte Paenibacillus sp. CH-3. Biotechnol. Appl. Biochem. 64, 471-481. https://doi.org/10.1002/bab.1510