DOI QR코드

DOI QR Code

Garcinexanthone G, a Selective Butyrylcholinesterase Inhibitor from the Stem Bark of Garcinia atroviridis

  • Khaw, Kooi-Yeong (Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia) ;
  • Murugaiyah, Vikneswaran (Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia) ;
  • Khairuddean, Melati (School of Chemical Sciences, Universiti Sains Malaysia) ;
  • Tan, Wen-Nee (School of Distance Education, Universiti Sains Malaysia)
  • Received : 2017.10.31
  • Accepted : 2018.01.15
  • Published : 2018.06.30

Abstract

The present study was undertaken to investigate the isolated compounds from the stem bark of Garcinia atroviridis as potential cholinesterase inhibitors and the ligand-enzyme interactions of selected bioactive compounds in silico. The in vitro cholinesterase results showed that quercetin (3) was the most active AChE inhibitor ($12.65{\pm}1.57{\mu}g/ml$) while garcinexanthone G (6) was the most active BChE inhibitor ($18.86{\pm}2.41{\mu}g/ml$). It is noteworthy to note that compound 6 was a selective inhibitor with the selectivity index of 11.82. Molecular insight from docking interaction further substantiate that orientation of compound 6 in the catalytic site which enhanced its binding affinity as compared to other xanthones. The nature of protein-ligand interactions of compound 6 is mainly hydrogen bonding, and the hydroxyl group of compound 6 at C-10 is vital in BChE inhibition activity. Therefore, compound 6 is a notable lead for further drug design and development of BChE selective inhibitor.

Keywords

References

  1. Tarawneh, R.; Holtzman, D. M. Cold Spring Harb. Perspect. Med. 2012, 2, a006148.
  2. Prince, M.; Comas-Herrera, A.; Knapp, M.; Guerchet, M.; Karagiannidou, M. World Alzheimer Report 2016.
  3. Herrup, K. Nat. Neurosci. 2015, 18, 794-799. https://doi.org/10.1038/nn.4017
  4. Aguzzi, A.; O'Connor, T. Nat. Rev. Drug Discov. 2010, 9, 237-248. https://doi.org/10.1038/nrd3050
  5. Hardy, J.; Selkoe, D. J. Science 2002, 297, 353-356. https://doi.org/10.1126/science.1072994
  6. Colovi , M. B.; Krsti , D. Z.; Lazarevi -Pasti, T. D.; Bondzi , A. M.; Vasi , V. M. Curr. Neuropharmacol. 2013, 11, 315-335. https://doi.org/10.2174/1570159X11311030006
  7. Scarpini, E.; Schelterns, P.; Feldman, H. Lancet Neurol. 2003, 2, 539-547. https://doi.org/10.1016/S1474-4422(03)00502-7
  8. Darvesh, S.; Grantham, D. L.; Hopkins, D. A. J. Comp. Neurol. 1998, 393, 374-390. https://doi.org/10.1002/(SICI)1096-9861(19980413)393:3<374::AID-CNE8>3.0.CO;2-Z
  9. Perry, E. K.; Perry, R. H.; Blessed, G.; Tomlinson, B. E. Neuropathol. Appl. Neurobiol. 1978, 4, 273-277. https://doi.org/10.1111/j.1365-2990.1978.tb00545.x
  10. Quinn, D. M. Chem. Rev. 1987, 87, 955-979. https://doi.org/10.1021/cr00081a005
  11. Sussman, J. L.; Harel, M.; Frolow, F.; Oefner, C.; Goldman, A.; Toker, L.; Silman, I. Science 1991, 253, 872-879. https://doi.org/10.1126/science.1678899
  12. Greig, N. H.; Utsuki, T.; Ingram, D. K.; Wang, Y.; Pepeu, G.; Scali, C.; Yu, Q. S.; Mamczarz, J.; Holloway, H. W.; Giordano, T.; Chen, D.; Furukawa, K.; Sambamurti, K.; Brossi, A.; Lahiri, D. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 17213-17218. https://doi.org/10.1073/pnas.0508575102
  13. Tan, W. N.; Khairuddean, M.; Wong, K. C.; Khaw, K. Y.; Vikneswaran, M. Fitoterapia. 2014, 97, 261-267. https://doi.org/10.1016/j.fitote.2014.06.003
  14. Tan, W. N.; Khairuddean, M.; Wong, K. C.; Tong, W. Y.; Ibrahim, D. J. Asian Nat. Prod. Res. 2016, 18, 804-811. https://doi.org/10.1080/10286020.2016.1160071
  15. Ellman, G. L.; Courtney, K. D.; Andres, V. Jr.; Feather-Stone, R. M. Biochem. Pharmacol. 1961, 7, 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  16. Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J. J. Comput. Chem. 1998, 19, 1639-1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  17. Carletti, E.; Aurbek, N.; Gillon, E.; Loiodice, M.; Nicolet, Y.; Fontecilla-Camps, J. -C.; Masson, P.; Thiermann, H.; Nachon, F.; Worek, F. Biochem. J. 2009, 421, 97-106. https://doi.org/10.1042/BJ20090091
  18. Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33-38. https://doi.org/10.1016/0263-7855(96)00018-5
  19. Khaw, K. Y.; Choi, S. B.; Tan, S. C.; Wahab, H. A.; Chan, K. L.; Murugaiyah, V. Phytomedicine 2014, 21, 1303-1309. https://doi.org/10.1016/j.phymed.2014.06.017
  20. Louh, G. N.; Lannang, A. M.; Mbazoa, C. D.; Tangmouo, J. G.; Komguem, J.; Castilho, P.; Ngninzeko, F. N.; Qamar, N.; Lontsi, D.; Choudhary, M. I.; Sondengam, B. L. Phytochemistry. 2008, 69, 1013-1017. https://doi.org/10.1016/j.phytochem.2007.10.002
  21. Khan, M. T. H.; Orhan, I.; Senol, F. S.; Kartal, M.; Sener, B.; Dvorska, M.; Smejkal, K.; Slapetova, T. Chem. Biol. Interact. 2009, 181, 383-389. https://doi.org/10.1016/j.cbi.2009.06.024
  22. Sriraksa, N.; Wattanathorn, J.; Muchimapura, S.; Tiamkao, S.; Brown, K.; Chaisiwamongkol, K. Evid. Based Complement. Alternat. Med. 2012, 2012, 823206.

Cited by

  1. Butyrylcholinesterase Inhibitory Activity and GC-MS Analysis of Carica papaya Leaves vol.26, pp.2, 2018, https://doi.org/10.20307/nps.2020.26.2.165