DOI QR코드

DOI QR Code

Antioxidant Compounds Isolated from the Roots of Phlomis umbrosa Turcz.

  • Nguyen, Duc Hung (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Le, Duc Dat (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Zhao, Bing Tian (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Ma, Eun Sook (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Min, Byung Sun (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University) ;
  • Woo, Mi Hee (College of Pharmacy, Drug Research and Development Center, Daegu Catholic University)
  • Received : 2017.09.21
  • Accepted : 2018.01.23
  • Published : 2018.06.30

Abstract

Two triterpenoids, arjunolic acid (1), belleric acid (2), five phenylethanoids, martynoside (3), orobanchoside (4), 3,4-dihydroxyphenethylalcohol-6-O-caffeoyl-${\beta}$-$\text\tiny{D}$-glucoside (5), leucosceptoside B (6), lunariifolioside (7), four phenolic acids, ferulic acid (8), syringic acid (9), vanillic acid (10), 4-hydroxybenzoic acid (11), and one lignan, (+)-syringaresinol-${\beta}$-$\text\tiny{D}$-glucoside (12), were isolated from the roots of P. umbrosa. All isolated compounds were explored for their antioxidant potential in the DPPH and ABTS assays. In DPPH assay, compound 5 showed high antioxidant capacity. Compounds 3, 4, 6, and 7 displayed considerable antioxidant activities. In addition, compounds 5-7 exhibited potential antioxidant capacities in the ABTS assay.

Keywords

References

  1. Shen, L.; Ji, H. F. Trends Food Sci. Technol. 2017, 68, 51-55. https://doi.org/10.1016/j.tifs.2017.08.010
  2. Bennett, L. L.; Rojas, S.; Seefeldt, T. J. Exp. Clin. Med. 2012, 4, 215-222. https://doi.org/10.1016/j.jecm.2012.06.001
  3. Lee, D.; Kim, Y. S.; Song, J.; Kim, H. S.; Lee, H. J.; Guo, H.; Kim, H. Molecules 2016, 21, 461. https://doi.org/10.3390/molecules21040461
  4. Zhang, Y.; Wang, Z. Z. J. Pharm. Biomed. Anal. 2008, 47, 213-217. https://doi.org/10.1016/j.jpba.2007.12.027
  5. Liu, P.; Deng, R.; Duan, H.; Yin, W. Zhongguo Zhong Yao Za Zhi 2009, 34, 867-870.
  6. Skrzypek, Z.; Wysokinska, H.; Swiatek, L.; Wroblewski, A. E. J. Nat. Prod. 1999, 62, 127-129. https://doi.org/10.1021/np970465b
  7. Nishibe, S.; Tamayama, Y.; Sasahara, M.; Andary, C. Phytochemistry 1995, 38, 741-743. https://doi.org/10.1016/0031-9422(94)00299-9
  8. Matsumoto, M.; Koga, S.; Shoyama, Y.; Nishioka, I. Phytochemistry 1987, 26, 3225-3227. https://doi.org/10.1016/S0031-9422(00)82474-7
  9. Saracoglu, I.; Harput, U. S.; Calib, I. Turk. J. Chem. 2002, 26, 133-142.
  10. Calis, I.; Kirmizibekmez, H. Phytochemistry 2004, 65, 2619-2625. https://doi.org/10.1016/j.phytochem.2004.04.038
  11. Sajjadi, S. E.; Shokoohinia, Y.; Moayedi, N. S. Jundishapur J. Nat. Pharm. Prod. 2012, 7, 159-162. https://doi.org/10.17795/jjnpp-4861
  12. Ngan, L. T. M.; Moon, J. K.; Shibamoto. T.; Ahn, Y. J. J. Agric. Food Chem. 2012, 60, 9062-9073. https://doi.org/10.1021/jf3035034
  13. Nguyen, D. H.; Zhao, B. T.; Le, D. D.; Kim, K. Y.; Kim, Y. H.; Yoon, Y. H.; Woo, K. S.; Ko, J. Y.; Woo, M. H. Nat. Prod. Sci. 2016, 22, 140-145. https://doi.org/10.20307/nps.2016.22.2.140
  14. Shahat, A. A.; Abdel-Azim, N. S.; Pieters, L.; Vlietinck, A. J. Fitoterapia 2004, 75, 771-773. https://doi.org/10.1016/j.fitote.2004.05.008
  15. Manna, P.; Sinha, M.; Sil, P. C. Arch. Toxicol. 2008, 82, 137-149. https://doi.org/10.1007/s00204-007-0272-8
  16. Pendota, S. C.; Aderogba, M. A.; Van Staden, J. S. Afr. J. Bot. 2015, 96, 91-93. https://doi.org/10.1016/j.sajb.2014.11.005
  17. Papoutsi, Z.; Kassi, E.; Mitakou, S.; Aligiannis, N.; Tsiapara, A.; Chrousos, G. P.; Moutsatsou, P. J. Steroid Biochem. Mol. Biol. 2006, 98, 63-71. https://doi.org/10.1016/j.jsbmb.2005.07.005
  18. Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. Food Science and Human Wellness 2014, 3, 136-174. https://doi.org/10.1016/j.fshw.2014.11.003
  19. Yamazaki, T.; Shimosaka, S.; Sasaki, H.; Matsumura, T.; Tukiyama, T.; Tokiwa, T. Toxicol. In Vitro 2007, 21, 1530-1537. https://doi.org/10.1016/j.tiv.2007.04.016
  20. Kumar, N.; Pruthi, V. Biotechnol. Rep. 2014, 4, 86-93. https://doi.org/10.1016/j.btre.2014.09.002
  21. Karthik, G.; Angappan, M.; Vijayakumar, A.; Natarajapillai, S. Biomed. Prev. Nutr. 2014, 4, 203-208. https://doi.org/10.1016/j.bionut.2014.01.007
  22. Calixto-Campos, C.; Carvalho, T. T.; Hohmann, M. S. N.; Pinho-Ribeiro, F. A.; Fattori, V.; Manchope, M. F.; Zarpelon, A. C.; Baracat, M. M.; Georgetti, S. R.; Casagrande, R.; Verri, W. A. Jr. J. Nat. Prod. 2015, 78, 1799-1808. https://doi.org/10.1021/acs.jnatprod.5b00246
  23. Cho, J. Y.; Moon, J. H.; Seong, K. Y.; Park, K. H. Biosci. Biotehnol. Biochem. 1998, 62, 2273-2276. https://doi.org/10.1271/bbb.62.2273

Cited by

  1. Beneficial Effects of Deoxyshikonin on Delayed Wound Healing in Diabetic Mice vol.19, pp.11, 2018, https://doi.org/10.3390/ijms19113660
  2. Phenylpropanoid-Conjugated Triterpenoids from the Leaves of Actinidia arguta and Their Inhibitory Activity on α-Glucosidase vol.83, pp.5, 2020, https://doi.org/10.1021/acs.jnatprod.9b00643
  3. PTP1B Inhibitory and Anti-inflammatory Properties of Constituents from Eclipta prostrata L. vol.44, pp.3, 2018, https://doi.org/10.1248/bpb.b20-00994
  4. Structural elucidation, distribution and antioxidant activity of bound phenolics from whole grain brown rice vol.358, pp.None, 2018, https://doi.org/10.1016/j.foodchem.2021.129872