Pattern Analysis of Volume of Basal Ganglia Structures in Patients with First-Episode Psychosis

초발 정신병 환자에서 기저핵 구조물 부피의 패턴분석

  • Min, Sally (Department of Medicine, Seoul National University College of Medicine) ;
  • Lee, Tae Young (Department of Psychiatry, Seoul National University College of Medicine) ;
  • Kwak, Yoobin (Department of Brain & Cognitive Sciences, Seoul National University College of Natural Science) ;
  • Kwon, Jun Soo (Department of Medicine, Seoul National University College of Medicine)
  • 민세리 (서울대학교 의과대학 의학과학교실) ;
  • 이태영 (서울대학교 의과대학 신경정신의학교실) ;
  • 곽유빈 (서울대학교 자연과학대학 뇌인지과학과) ;
  • 권준수 (서울대학교 의과대학 의학과학교실)
  • Received : 2018.03.13
  • Accepted : 2018.05.09
  • Published : 2018.05.31

Abstract

Objectives Dopamine dysregulation has been regarded as one of the core pathologies in patients with schizophrenia. Since dopamine synthesis capacity has found to be inconsistent in patients with schizophrenia, current classification of patients based on clinical symptoms cannot reflect the neurochemical heterogeneity of the disease. Here we performed new subtyping of patients with first-episode psychosis (FEP) through biotype-based cluster analysis. We specifically suggested basal ganglia structural changes as a biotype, which deeply involves in the dopaminergic circuit. Methods Forty FEP and 40 demographically matched healthy participants underwent 3T T1 MRI. Whole brain parcellation was conducted, and volumes of total 6 regions of basal ganglia have been extracted as features for cluster analysis. We used K-means clustering, and external validation was conducted with Positive and Negative Syndrome Scale (PANSS). Results K-means clustering divided 40 FEP subjects into 2 clusters. Cluster 1 (n = 25) showed substantial volume decrease in 4 regions of basal ganglia compared to Cluster 2 (n = 15). Cluster 1 showed higher positive scales of PANSS compared with Cluster 2 (F = 2.333, p = 0.025). Compared to healthy controls, Cluster 1 showed smaller volumes in 4 regions, whereas Cluster 2 showed larger volumes in 3 regions. Conclusions Two subgroups have been found by cluster analysis, which showed a distinct difference in volume patterns of basal ganglia structures and positive symptom severity. The result possibly reflects the neurobiological heterogeneity of schizophrenia. Thus, the current study supports the importance of paradigm shift toward biotype-based diagnosis, instead of phenotype, for future precision psychiatry.

Acknowledgement

Supported by : 한국연구재단

References

  1. Wiersma D, Wanderling J, Dragomirecka E, Ganev K, Harrison G, An Der Heiden W, et al. Social disability in schizophrenia: its development and prediction over 15 years in incidence cohorts in six European centres. Psychol Med 2000;30:1155-1167. https://doi.org/10.1017/S0033291799002627
  2. Snyder SH. The dopamine hypothesis of schizophrenia: focus on the dopamine receptor. Am J Psychiatry 1976;133:197-202. https://doi.org/10.1176/ajp.133.2.197
  3. Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 2000;57:553-559. https://doi.org/10.1001/archpsyc.57.6.553
  4. Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, et al. Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacology (Berl) 1989;99:463-472. https://doi.org/10.1007/BF00589893
  5. Brucke T, Podreka I, Angelberger P, Wenger S, Topitz A, Kufferle B, et al. Dopamine D2 receptor imaging with SPECT: studies in different neuropsychiatric disorders. J Cereb Blood Flow Metab 1991;11:220-228. https://doi.org/10.1038/jcbfm.1991.53
  6. Kirschner M, Hager OM, Bischof M, Hartmann MN, Kluge A, Seifritz E, et al. Ventral striatal hypoactivation is associated with apathy but not diminished expression in patients with schizophrenia. J Psychiatry Neurosci 2016;41:152-161. https://doi.org/10.1503/jpn.140383
  7. Moller HJ. Management of the negative symptoms of schizophrenia: new treatment options. CNS Drugs 2003;17:793-823. https://doi.org/10.2165/00023210-200317110-00003
  8. Kim E, Howes OD, Veronese M, Beck K, Seo S, Park JW, et al. Presynaptic dopamine capacity in patients with treatment-resistant schizophrenia taking clozapine: an [$^{18}F$]DOPA PET Study. Neuropsychopharmacology 2017;42:941-950. https://doi.org/10.1038/npp.2016.258
  9. Aghajanian GK, Marek GJ. Serotonin model of schizophrenia: emerging role of glutamate mechanisms. Brain Res Brain Res Rev 2000;31:302-312. https://doi.org/10.1016/S0165-0173(99)00046-6
  10. Dickinson D, Pratt DN, Giangrande EJ, Grunnagle M, Orel J, Weinberger DR, et al. Attacking heterogeneity in schizophrenia by deriving clinical subgroups from widely available symptom data. Schizophr Bull 2018;44:101-113. https://doi.org/10.1093/schbul/sbx039
  11. Ford JM, Morris SE, Hoffman RE, Sommer I, Waters F, McCarthy-Jones S, et al. Studying hallucinations within the NIMH RDoC framework. Schizophr Bull 2014;40 Suppl 4:S295-S304. https://doi.org/10.1093/schbul/sbu011
  12. Insel TR. The NIMH Research Domain Criteria (RDoC) project: precision medicine for psychiatry. Am J Psychiatry 2014;171:395-397. https://doi.org/10.1176/appi.ajp.2014.14020138
  13. Javitt DC. Biotypes in psychosis: has the RDoC era arrived? Am J Psychiatry 2016;173:313-314. https://doi.org/10.1176/appi.ajp.2016.16020140
  14. Howes OD, Kapur S. The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 2009;35:549-562. https://doi.org/10.1093/schbul/sbp006
  15. Rolland B, Amad A, Poulet E, Bordet R, Vignaud A, Bation R, et al. Resting-state functional connectivity of the nucleus accumbens in auditory and visual hallucinations in schizophrenia. Schizophr Bull 2015;41:291-299. https://doi.org/10.1093/schbul/sbu097
  16. Ceaser AE, Barch DM. Striatal activity is associated with deficits of cognitive control and aberrant salience for patients with schizophrenia. Front Hum Neurosci 2016;9:687.
  17. Howes OD, Bose SK, Turkheimer F, Valli I, Egerton A, Valmaggia LR, et al. Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry 2011;168:1311-1317. https://doi.org/10.1176/appi.ajp.2011.11010160
  18. Howes OD, Shotbolt P, Bloomfield M, Daalman K, Demjaha A, Diederen KM, et al. Dopaminergic function in the psychosis spectrum: an [$^{18}F$]-DOPA imaging study in healthy individuals with auditory hallucinations. Schizophr Bull 2013;39:807-814. https://doi.org/10.1093/schbul/sbr195
  19. Demjaha A, Murray RM, McGuire PK, Kapur S, Howes OD. Dopamine synthesis capacity in patients with treatment-resistant schizophrenia. Am J Psychiatry 2012;169:1203-1210. https://doi.org/10.1176/appi.ajp.2012.12010144
  20. Haijma SV, Van Haren N, Cahn W, Koolschijn PC, Hulshoff Pol HE, Kahn RS. Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects. Schizophr Bull 2013;39:1129-1138. https://doi.org/10.1093/schbul/sbs118
  21. Smieskova R, Marmy J, Schmidt A, Bendfeldt K, Riecher-ROssler A, Walter M, et al. Do subjects at clinical high risk for psychosis differ from those with a genetic high risk?--A systematic review of structural and functional brain abnormalities. Curr Med Chem 2013;20:467-481.
  22. Cuesta MJ, Lecumberri P, Cabada T, Moreno-Izco L, Ribeiro M, Lopez-Ilundain JM, et al. Basal ganglia and ventricle volume in first-episode psychosis. A family and clinical study. Psychiatry Res Neuroimaging 2017;269:90-96. https://doi.org/10.1016/j.pscychresns.2017.09.010
  23. Emsley R, Asmal L, du Plessis S, Chiliza B, Kidd M, Carr J, et al. Dorsal striatal volumes in never-treated patients with first-episode schizophrenia before and during acute treatment. Schizophr Res 2015;169:89-94. https://doi.org/10.1016/j.schres.2015.09.014
  24. Hong SB, Lee TY, Kwak YB, Kim SN, Kwon JS. Baseline putamen volume as a predictor of positive symptom reduction in patients at clinical high risk for psychosis: a preliminary study. Schizophr Res 2015;169:178-185. https://doi.org/10.1016/j.schres.2015.10.029
  25. Chakos MH, Lieberman JA, Bilder RM, Borenstein M, Lerner G, Bogerts B, et al. Increase in caudate nuclei volumes of first-episode schizophrenic patients taking antipsychotic drugs. Am J Psychiatry 1994;151:1430-1436. https://doi.org/10.1176/ajp.151.10.1430
  26. Lieberman JA, Tollefson GD, Charles C, Zipursky R, Sharma T, Kahn RS, et al.; HGDH Study Group. Antipsychotic drug effects on brain morphology in first-episode psychosis. Arch Gen Psychiatry 2005;62:361-370. https://doi.org/10.1001/archpsyc.62.4.361
  27. Glenthoj A, Glenthoj BY, Mackeprang T, Pagsberg AK, Hemmingsen RP, Jernigan TL, et al. Basal ganglia volumes in drug-naive firstepisode schizophrenia patients before and after short-term treatment with either a typical or an atypical antipsychotic drug. Psychiatry Res 2007;154:199-208. https://doi.org/10.1016/j.pscychresns.2006.10.002
  28. Breitborde NJ, Srihari VH, Woods SW. Review of the operational definition for first-episode psychosis. Early Interv Psychiatry 2009;3:259-265. https://doi.org/10.1111/j.1751-7893.2009.00148.x
  29. First MB, Spitzer RL, Gibbon M, Williams JBW. Structured Clinical Interview for DSM-IV Axis I Disorders. Patient Edition. New York, NY: Biometrics Research Department, New York State Psychiatric Institute;1995.
  30. Kay SR, Fiszbein A, Opler LA. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull 1987;13:261-276. https://doi.org/10.1093/schbul/13.2.261
  31. Gardner DM, Murphy AL, O'Donnell H, Centorrino F, Baldessarini RJ. International consensus study of antipsychotic dosing. Am J Psychiatry 2010;167:686-693.
  32. Sorg C, Manoliu A, Neufang S, Myers N, Peters H, Schwerthoffer D, et al. Increased intrinsic brain activity in the striatum reflects symptom dimensions in schizophrenia. Schizophr Bull 2013;39:387-395. https://doi.org/10.1093/schbul/sbr184
  33. Shihabuddin L, Buchsbaum MS, Hazlett EA, Silverman J, New A, Brickman AM, et al. Striatal size and relative glucose metabolic rate in schizotypal personality disorder and schizophrenia. Arch Gen Psychiatry 2001;58:877-884. https://doi.org/10.1001/archpsyc.58.9.877
  34. Gur RE, Cowell P, Turetsky BI, Gallacher F, Cannon T, Bilker W, et al. A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomical changes to clinical and neurobehavioral measures. Arch Gen Psychiatry 1998;55:145-152. https://doi.org/10.1001/archpsyc.55.2.145
  35. Smieskova R, Fusar-Poli P, Allen P, Bendfeldt K, Stieglitz RD, Drewe J, et al. The effects of antipsychotics on the brain: what have we learnt from structural imaging of schizophrenia?--a systematic review. Curr Pharm Des 2009;15:2535-2549. https://doi.org/10.2174/138161209788957456
  36. Scherk H, Falkai P. Effects of antipsychotics on brain structure. Curr Opin Psychiatry 2006;19:145-150. https://doi.org/10.1097/01.yco.0000214339.06507.d8
  37. Garcia GJ, Chagas MH, Silva CH, Machado-de-Sousa JP, Crippa JA, Hallak JE. Structural and functional neuroimaging findings associated with the use of clozapine in schizophrenia: a systematic review. Rev Bras Psiquiatr 2015;37:71-79. https://doi.org/10.1590/1516-4446-2014-1387
  38. Ebdrup BH, Norbak H, Borgwardt S, Glenthoj B. Volumetric changes in the basal ganglia after antipsychotic monotherapy: a systematic review. Curr Med Chem 2013;20:438-447.
  39. Huhtaniska S, Jaaskelainen E, Hirvonen N, Remes J, Murray GK, Veijola J, et al. Long-term antipsychotic use and brain changes in schizophrenia-a systematic review and meta-analysis. Hum Psychopharmacol 2017;32:e2574. https://doi.org/10.1002/hup.2574
  40. Nesvag R, Bergmann O, Rimol LM, Lange EH, Haukvik UK, Hartberg CB, et al. A 5-year follow-up study of brain cortical and subcortical abnormalities in a schizophrenia cohort. Schizophr Res 2012; 142:209-216. https://doi.org/10.1016/j.schres.2012.10.004
  41. Andreasen NC, Liu D, Ziebell S, Vora A, Ho BC. Relapse duration, treatment intensity, and brain tissue loss in schizophrenia: a prospective longitudinal MRI study. Am J Psychiatry 2013;170:609-615. https://doi.org/10.1176/appi.ajp.2013.12050674