DOI QR코드

DOI QR Code

A Message Priority-based TCP Transmission Algorithm for Drone Systems

드론 시스템을 위한 메시지 우선순위 기반 TCP 통신 알고리즘

  • 최준혁 (경북대학교 전자공학부) ;
  • 김보람 (경북대학교 전자공학부) ;
  • 이동익 (경북대학교 전자공학부)
  • Received : 2018.02.06
  • Accepted : 2018.06.15
  • Published : 2018.06.30

Abstract

TCP is a well-known communication protocol which is widely used for reliable message transmissions. The urgent mechanism of TCP plays a key role to transmit messages with a high priority. If a high priority message occurs at the transmitting node, the urgent mechanism informs the receiving node about the presence of a high priority message prior to its transmission so that the receiving node can be prepared for handling this message in advance. This implies that the existing urgent mechanism of TCP does not guarantee an immediate or faster delivery of the high priority message itself. Therefore, the ability of priority-based transmission is required on TCP not only to ensure reliable transmissions of normal messages but also to offer a differentiated service according to the priority of message. This paper presents a priority-based transmission algorithm over TCP using a priority queue in a multi-threaded environment. The effectiveness of the proposed algorithm is explored using an experimental setup in which various messages with different priority levels are transmitted.

TCP는 메시지 전송에 광범위하게 쓰이는 잘 알려진 송수신 프로토콜이다. TCP의 긴급 메커니즘은 우선순위가 높은 메시지를 전송할 때 규칙 역할을 한다. 긴급 메커니즘은 우선순위가 높은 메시지의 발생 사실을 수신 노드에 미리 알려줌으로써 수신 노드로 하여금 미리 준비하도록 돕는다. 하지만 TCP의 긴급 메커니즘은 우선순위가 높은 메시지의 즉시 또는 빠른 전송을 보장하지는 않는다. 따라서 TCP에 보통 메시지의 신뢰적인 전송과 메시지의 우선순위에 따른 차별 전송 기능을 제공하기 위에 우선순위 기반 전송의 기능이 필요하다. 본 논문은 TCP 프로토콜을 위한 멀티 쓰레드 환경에서의 우선순위 규를 이용한 우선순위 기반 전송 알고리즘을 제안한다. 제안된 알고리즘의 효율성은 다른 우선순위 레벨을 가진 여러 메시지를 전송하는 실험 환경을 통해 검증되었다.

Keywords

References

  1. M. Mlam and E. Hamida, "Surveying wearable human assistive technology for life and safety critical applications: Standards, challenges and opportunities," Sensors, vol. 14, no. 5, 2014, pp. 9153-9209. https://doi.org/10.3390/s140509153
  2. Q. Zhou and P. Ma, "An improved HCCA mechanism for safety critical real time system," Proc. 8th IEEE Int. Conf. on Communication Software and Networks (ICCSN), Beijing, China, June 2016, pp. 311-315.
  3. P. Rudol and P. Doherty, "Human body detection and geolocalization for UAV search and rescue missions using color and thermal imagery," Proc. 2008 IEEE Aerospace Conf., Big Sky, USA, Mar. 2008.
  4. K. Choi, J. Kim, and I. Lee, "Development of a close-range real-time aerial monitoring system based on a low altitude unmanned air vehicle," J. of Korea Spatial Information Society, vol. 19, no. 3, 2011, pp. 21-31.
  5. J. Jo, "Highway drone patrol network topology and performance analysis for traffic violation enforcement," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 6, 2017, pp. 1043-1048. https://doi.org/10.13067/JKIECS.2017.12.6.1043
  6. M. Mahmood, W. Seah, and I. Welch, "Reliability in wireless sensor networks: A survey and challenges ahead," Computer Networks, vol. 79, no. 12, 2015, pp. 166-187. https://doi.org/10.1016/j.comnet.2014.12.016
  7. D. Yoon, S. Lee, K. Lee, S. Han, and Y. Kim, "A study on flight stabilization of drones by gyro sensor and PID control," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 4, 2017, pp. 591-598. https://doi.org/10.13067/JKIECS.2017.12.4.591
  8. N. Golrezaei, P. Mansourifard, A. Folisch, and A. Dimakis, "Base-station assisted device-to-device communications for high-throughput wireless video networks," IEEE Trans. Wireless Communications, vol. 13, no. 7, 2014, pp. 3665-3676. https://doi.org/10.1109/TWC.2014.2316817
  9. B. Kim, "Implementation of TCP retransmitted packet loss recovery using ns-2 simulator," J. of the Korea Institute of Electronic Communication Sciences, vol. 7, no. 4, 2012, pp. 741-746. https://doi.org/10.13067/JKIECS.2012.7.4.741
  10. M. Lee, "A study on the throughput guarantee with TCP traffic control," J. of the Korea Institute of Electronic Communication Sciences, vol. 11, no. 3, 2016, pp. 303-308. https://doi.org/10.13067/JKIECS.2016.11.3.303
  11. W. Gay, Linux socket programming: by example. Clemson, USA,: Que Corp., 2000.
  12. W. R. Stevens, B. Fenner, and A. M. Rudoff, UNIX Network Programming: The Sockets Networking API, vol. 1. San Antonio, USA,: Addison-Wesley Professional, 2004.
  13. J. Postal, RFC 793: Transmission control protocol, Status: Standard, 88, San Diego, USA, 2003.