DOI QR코드

DOI QR Code

Antioxidant activity and protective effects on oxidative DNA damage of Smilax china root

토복령의 항산화 및 산화적 DNA 손상억제 활성

  • Jang, Tae-Won (Department of Medicinal Plant Resources, Andong National University) ;
  • Oh, Chang-Gun (Department of Medicinal Plant Science, Jungwon University) ;
  • Park, Jae-Ho (Department of Medicinal Plant Science, Jungwon University)
  • Received : 2018.02.12
  • Accepted : 2018.03.20
  • Published : 2018.06.30

Abstract

Recently, cancer incidence in modern society is increasing sharply. DNA damage is caused by intrinsic or extrinsic factors in the human body, cells protect themselves by defense mechanism against DNA damage. Also, Aberrant DNA and deficient DNA repair are closely associated with various diseases, including aging and cancer. Researchers are interested in search for proper materials to inhibition for DNA damage. As knew the side effects of synthetic antioxidant, some researches have been conducted about cancer prevention materials derived from nature. Root of Smilax china, in Liliaceae, is used detoxification and tumor treatments traditionally. However, studies on the inhibitory effect of DNA damage haven't progressed. In this study, antioxidant activity and protective effects on oxidative DNA damage of S. china root were confirmed, relationship between those activities and contents of phenolic compounds in plants were established. S. china root effectively removed 1,1-diphenyl-2-picryl-hydrazyl radicals and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid radicals. The quantification and identification of phenolic compounds were confirmed by high performance liquid chromatography analysis, its antioxidant activity was associated with some phenolic compounds. In addition, protective effects against hydroxyl radicals and ferrous ion-induced oxidative DNA damage were confirmed in plasmid DNA. In the cellular levels, S. china root suppressed the expression of ${\gamma}$-H2AX and p53 protein in NIH 3T3. Besides, S. china root suppressed H2AX and p53 mRNA levels. In conclusion, S. china root had the effect on DNA protection and antioxidant.

최근까지도, 현대사회의 암 발생률은 급격하게 증가하고 있다. 인체 내부에서 내재적 또는 외재적인 요인에 의해 DNA 손상이 발생되고, 세포는 DNA 손상에 대한 방어기작을 통해 스스로를 방어한다. 또한, 비정상적인 DNA 생성 및 결손된 DNA 가닥의 복원은 노화, 암, 염증 등 다양한 질병으로부터 기인한다. 많은 연구자는 이러한 DNA 손상을 억제하기 위하여 적절한 소재 탐색에 많은 관심을 두고 있으며, 특히 합성화합물의 부작용이 알려지면서, 천연물을 기반으로 한 암 예방적 소재에 대한 연구가 많이 이루어지고 있다. 토복령은 백합과(Liliacese)에 속하는 청미래덩굴(Smilax china L.)의 근경이며, 전통적으로 해독과 종기 등의 치료제로 사용되어왔다. 하지만 토복령의 DNA 손상에 대한 억제 효과에 대한 연구는 미흡하다. 본 논문에서는 토복령의 항산화 효과 및 DNA 손상에 대한 억제 효과를 확인하고, 식물이 포함하는 phenolic 화합물의 활성과 연관 관계를 확인하고자 하였다. 항산화 효과를 확인하기 위해, DPPH 라디칼 및 ABTS 라디칼에 대한 소거 활성을 확인하였다. 토복령 추출물은 DPPH 및 ABTS 라디칼을 효과적으로 제거하였으며, 높은 환원력을 나타냈다. HPLC 분석을 통해 phenolic 화합물을 정량 및 동정하였으며, 항산화 효과와 phenolic 화합물의 연관 관계를 확인하였다. 또한, $OH^-$ 라디칼 및 $Fe^{2+}$으로 유발된 plasmid DNA 손상에 대한 방어 효과를 확인하였다. 세포 수준에서, DNA 손상에 대한 저해 효과는 산화적 스트레스로 유발된 NIH 3T3 세포의 ${\gamma]$-H2AX 및 p53 단백질 발현 저해 활성을 확인하였다. 또한, H2AX 및 p53 mRNA 수준의 저해 활성을 확인하였다. 결론적으로, 토복령 추출물의 phenolic 화합물의 항산화 효과 및 DNA 손상에 대한 억제 효과를 확인하였다.

Keywords

References

  1. Kandasamy G, Maity D (2015) Recent advances in superparamagnetic iron oxide nanoparticles (SPIONs) for in vitro and in vivo cancer nanotheranostics. Int J Pharm 496: 191-218 https://doi.org/10.1016/j.ijpharm.2015.10.058
  2. Surh YJ (1999) Molecular mechanisms of chemopreventive effects of selected dietary and medicinal phenolic substances. Mutat Res 428: 305-327 https://doi.org/10.1016/S1383-5742(99)00057-5
  3. Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T (1996) Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci USA 93: 11848-11852 https://doi.org/10.1073/pnas.93.21.11848
  4. Scharer OD (2003) Chemistry and biology of DNA repair. Angew Chem Int Ed Engl 42: 2946-2974 https://doi.org/10.1002/anie.200200523
  5. Stadtman ER (2006) Protein oxidation and aging. Free Radic Res 40: 1250-1258
  6. Gilgun-Sherki Y, Rosenbaum Z, Melamed E, Offen D (2002) Antioxidant therapy in acute central nervous system injury: current state. Pharmacol Rev 54: 271-284 https://doi.org/10.1124/pr.54.2.271
  7. Kong YJ, Park BK, Oh DH (2001) Antimicrobial activity of Quercus mongolica leaf ethanol extract and organic acids against food-borne microorganisms. Kor J Food Sci Technol 33: 178-183
  8. Harold ES, Darrell EA, Evan IF, John AM (2007) A review of the interaction among dietary antioxidants and reactive oxygen species. J Nutr Biochem 18: 567-579 https://doi.org/10.1016/j.jnutbio.2006.10.007
  9. Hamanaka RB, Chandel NS (2010) Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem Sci 35: 505-513 https://doi.org/10.1016/j.tibs.2010.04.002
  10. Simon HU, Haj-Yehia A, Levi-Schaffer F (2000) Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis 5: 415-418 https://doi.org/10.1023/A:1009616228304
  11. Fernandez-Capetillo O, Lee A, Nussenzweig M, Nussenzweig A (2004) H2AX: the histone guardian of the genome. DNA Repair 3: 959-967 https://doi.org/10.1016/j.dnarep.2004.03.024
  12. Stucki M, Clapperton JA, Mohammad D, Yaffe MB, Smerdon SJ, Jackson SP (2005) MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA doublestrand breaks. Cell 123: 1213-1226 https://doi.org/10.1016/j.cell.2005.09.038
  13. Liu B, Chen Y, St Clair DK (2008) ROS and p53: a versatile partnership. Free Radic Biol Med 44: 1529-1535 https://doi.org/10.1016/j.freeradbiomed.2008.01.011
  14. Polyak K, Xia Y, Zweier JL, Kinzler KW, Vogelstein B (1997) A model for p53-induced apoptosis. Nature 389: 300-305 https://doi.org/10.1038/38525
  15. Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11: 1306-1313 https://doi.org/10.1038/nm1320
  16. Maxwell SR (1995) Prospects for the use of antioxidant therapies. Drugs 49: 345-361 https://doi.org/10.2165/00003495-199549030-00003
  17. Hwang JY, Lee HS, Han JS (2011) Protective effect of Sasa borealis leaf extract on AAPH-induced oxidative stress in LLC-PK1 cells. J Food Sce Nutr 16: 12-17
  18. Warnholtz A, Munzel T (2000) Why do antioxidants fail to provide clinical benefit? Curr Control Trials Cardiovasc Med 1: 38-40 https://doi.org/10.1186/CVM-1-1-038
  19. Choe SY, Yang KH (1982) Toxicological studies of antioxidants butylated hydroxytoluene (BHT) and butylated hydroxyanisole (BHA). Korean J Food Sci Technol 14: 283-288
  20. Lee YS, Joo EJ, Kim NW (2006) Polyphenol contents and antioxidant activity of Lepista nuda. J Korean Soc Food Sci Nutr 35: 1309-1314 https://doi.org/10.3746/jkfn.2006.35.10.1309
  21. Lee JC, Kim HR, Kim J, Jang YS (2002) Antioxidant Property of an Ethanol Extract of the Stem of Opuntia ficus-indica var. Saboten. J Agric Food Chem 50: 6490-6496 https://doi.org/10.1021/jf020388c
  22. Wei QY, Zhou B, Jun Y, Liu ZL (2006) Synergistic effect of green tea polyphenols with trolox on free radical-ed oxidative DNA damage. Food Chem 96: 90-95 https://doi.org/10.1016/j.foodchem.2005.01.053
  23. Prakash CP, Garima U, Brahma NS, Harikesh B (2007) Antioxidant and free radical-scavenging activities of seeds and agri-wastes of some varieties of soybean (Glycine max). Food Chem 104: 783-790 https://doi.org/10.1016/j.foodchem.2006.12.029
  24. Chen L, Yin H, Lan Z, Ma S, Zhang C, Yang Z, Li P, Lin B (2011) Antihyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharmacol 135: 399-405 https://doi.org/10.1016/j.jep.2011.03.033
  25. Shu XS, Gao ZH, Yang XL (2006) Anti-inflammatory and antinociceptive activities of Smilax china L. aqueous extract. J Ethnopharmacol 103: 327-332 https://doi.org/10.1016/j.jep.2005.08.004
  26. Cheng DS, Hua XL (2006) Today's research of Smilax china. J Chin Med Tradit Chin Med 29: 90-93
  27. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, Liu YW, Liu JW (2007) A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol 113: 115-124 https://doi.org/10.1016/j.jep.2007.05.016
  28. Bondet V, Brand-Williams W, Berset C (1997) Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Sci Technol 30: 609-615 https://doi.org/10.1006/fstl.1997.0240
  29. Van den Berg R, Haenen GR, van den Berg H, Bast AALT (1999) Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem 66: 511-517 https://doi.org/10.1016/S0308-8146(99)00089-8
  30. Oyaizu M (1986) Studies on products of browning reaction: antioxidative activities of products of browning reaction prepared from glucosamine. Jpn J Nutr 44: 307-315 https://doi.org/10.5264/eiyogakuzashi.44.307
  31. Jung Y, Surh Y (2001) Oxidative DNA damage and cytotoxicity unduced by copper-stimulated redox cycling of salsolinol. a neurotoxic tetrahydroisoquinoline alkalooid. Free Radic Biol Med 30: 1407-1417 https://doi.org/10.1016/S0891-5849(01)00548-2
  32. Padayatty SJ, Katz A, Wang Y, Eck P, Kwon O, Lee JH, Chen S, Corpe C, Dutta A, Dutta SK, Levine M (2003) Vitamin C as an antioxidant: evaluation of its role in disease prevention. J Am Coll Nutr 22: 18-35 https://doi.org/10.1080/07315724.2003.10719272
  33. Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3: 3-8
  34. Ozsoy N, Can A, Yanardag R, Akev N (2008) Antioxidant activity of Smilax excelsa L. leaf extracts. Food Chem 110: 571-583 https://doi.org/10.1016/j.foodchem.2008.02.037
  35. Meir S, Kanner J, Akiri B, Philosoph-Hadas S (1995) Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. J Agric Food Chem 43: 1813-1819 https://doi.org/10.1021/jf00055a012
  36. Ferreira IC, Baptista P, Vilas-Boas M, Barros L (2007) Free-radical scavenging capacity and reducing power of wild edible mushrooms from northeast Portugal: Individual cap and stipe activity. Food Chem 100: 1511-1516 https://doi.org/10.1016/j.foodchem.2005.11.043
  37. Chanda S, Dave R (2009) In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr J Microbiol Res 3: 981-996
  38. Marnett L (2000) Oxiradicals and DNA damage. Carcinogenesis 21: 361-370 https://doi.org/10.1093/carcin/21.3.361
  39. Ferreres F, Gomes D, Valentao P, Goncalves R, Pio R, Chagas EA, Seabra RM, Andrade PB (2009) Improved loquat (Eriobotrya japonica Lindl.) cultivars: Variation of phenolics and antioxidative potential. Food Chem 114: 1019-1027 https://doi.org/10.1016/j.foodchem.2008.10.065
  40. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA (2008) DNA repair pathways as targets for cancer therapy. Nat Rev Cancer 8: 193-204 https://doi.org/10.1038/nrc2342
  41. Bohgaki T, Bohgaki M, Hakem R (2010) DNA double-strand break signaling and human disorders, Genome Integr 1: 15 https://doi.org/10.1186/2041-9414-1-15
  42. Shrivastav M, Miller CA, De Haro LP, Durant ST, Chen BP, Chen DJ, Nickoloff JA (2008) DNA-PKcs and ATM co-regulate DNA doublestrand break repair. DNA Repair 8: 920-929
  43. Kendra LC, Geoffrey GH (2007) Regulation of the cellular DNA double-strand break response. Biochem Cell Biol 85: 663-674 https://doi.org/10.1139/O07-135
  44. Marechal A, Zou L (2013) DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. doi: 10.1101/cshperspect.a012716
  45. Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28: 739-745 https://doi.org/10.1016/j.molcel.2007.11.015

Cited by

  1. 토복령 추출물 첨가로 인한 돼지갈비 소스의 품질 특성 vol.9, pp.12, 2019, https://doi.org/10.22156/cs4smb.2019.9.12.166