DOI QR코드

DOI QR Code

Anti-inflammatory effect potentials of ethanol extracts from fermentated Caryopteris incana by Lactobacillus plantarum on induced to LPS with Raw 264.7 cell

LPS로 유도된 Raw 264.7 cell에서 Lactobacillus plantarum 발효가 층꽃나무(Caryopteris incana) 에탄올 추출물의 염증반응에 미치는 영향

  • Park, Mi-Jeong (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Park, Hye-Jin (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Lee, Eun-Ho (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University) ;
  • Jung, Hee-Young (School of Applied Biosciences, Kyungpook National University) ;
  • Cho, Young-Je (School of Food science & Biotechnology/Food & Bio-Industry Research Institute, Kyungpook National University)
  • Received : 2018.02.07
  • Accepted : 2018.04.16
  • Published : 2018.06.30

Abstract

In this study, the inflammation of ethanol extracts from Caryopteris incana (CI) and fermented C. incana (FCI) on induced to lipopolysaccharide with Raw 264.7 cell was tested. The composition profile of L. plantarum was changed by fermentation, and confirmed by HPLC analysis. We performed the 3-[4,5-dimethylthiazol]-2-yl]-2,5-diphenyltetrazolium bromide assay to evaluate the toxicity of CI and FCI extracts. In cell viability, cell toxicity was not shown at 5, 10 and $15{\mu}g/mL$ of CI extracts and 10, 20, 30 and $40{\mu}g/mL$ of FCI extracts. The results of inducible nitric oxide synthase and cyclooxygenase-2 protein production were confirmed to be inhibitory in a concentration-dependent manner, respectively. Additionally, protein expression of nitric oxide and prostaglandin $E_2$ by CI and FCI extracts were also inhibited in a concentration-dependent manner. In the result of pro-inflammatory cytokine, $15{\mu}g/mL$ concentration of CI extracts was showed tumar necrosis factor $(TNF)-{\alpha}$ (57.3%), interleukin (IL)-6 (35.2%), and $IL-1{\beta}$ (48.0%), respectively. And $40{\mu}g/mL$ of FCI extracts was showed $TNF-{\alpha}$ (34.6%), IL-6 (32.1%), and $IL-1{\beta}$ (30.0%), respectively. These results suggest that FCI extracts showed better effect of anti-inflammatory than CI extracts. Therefore, it was found that both CI and FCI can be used as an excellent material for the development of new anti-inflammatory resource.

본 연구에서는 층꽃나무와 L. plantarum으로 발효한 층꽃나무를 각각 80% ethanol로 추출하여 추출물들이 LPS로 유도된 Raw 264.7 cell의 염증반응에 미치는 영향을 비교 검증하여 항염증 소재 개발 가능성을 검토하였다. HPLC를 이용하여 L. plantarum에 의한 층꽃나무 발효 추출물의 유용성분 변화를 확인한 결과, 발효를 통해 유용성분의 profile 변화가 있는 것을 확인할 수 있었다. Raw 264.7 cell에서 세포 독성을 측정하기 위해 MTT assay를 실시한 결과, 층꽃나무 80% ethanol 추출물은 5, 10, $15{\mu}g/mL$의 농도에서 발효 층꽃나무 80% ethanol 추출물의 경우 10, 20, 30, $40{\mu}g/mL$의 농도에서 90.0% 이상의 세포 생존율을 나타내었다. 항염증 효능을 검정하기 위해 iNOS 단백질 발현량, COX-2 단백질 발현량, NO 생성, $PGE_2$ 생성, pro-inflammatory cytokine 발현량을 측정하였다. NO 생합성 효소인 iNOS 단백질의 발현량을 측정한 결과, 층꽃나무와 발효 층꽃나무 80% ethanol 추출물은 각각 15, $40{\mu}g/mL$의 농도에서 약 50.0% 가까운 발현 억제 효과를 나타내었으며, 농도 의존적으로 감소하는 것을 확인할 수 있었다. $PGE_2$ 생합성 효소인 COX-2 단백질의 발현량을 측정한 결과, 층꽃나무 80% ethanol 추출물은 $15{\mu}g/mL$ 농도에서 50.0%, 발효 층꽃나무 80% ethanol 추출물은 $40{\mu}g/mL$ 농도에서 83.0%의 발현 억제 효과를 보여주었다. NO 생성 억제 효과를 측정한 결과 층꽃나무 80% ethanal 추출물은 $15{\mu}g/mL$ 농도에서 62.0%, 발효 층꽃나무는 $40{\mu}g/mL$ 농도에서 81.0%로 control군과 비교하였을 때 NO 생성이 크게 억제되었다. $PGE_2$ 생성 억제 효과를 측정한 결과, 층꽃나무와 발효 층꽃나무 80% ethanal 추출물은 각각 15, $30{\mu}g/mL$의 농도에서 약 70.0%의 발현 억제 효과를 나타내었다. 또한, pro-inflammatory cytokine의 경우, 층꽃나무 80% ethanol 추출물 $15{\mu}g/mL$ 농도에서 $TNF-{\alpha}$는 43.6%, IL-6는 64.3%, $IL-1{\beta}$는 58.7%의 저해율을 나타냈으며, 발효 층꽃나무 80% ethanol 추출물 $40{\mu}g/mL$ 농도에서 $TNF-{\alpha}$는 75.4%, IL-6는 64.3%, $IL-1{\beta}$는 37.7%의 발현 억제 효과를 나타내었다. 이상의 결과를 통해 층꽃나무는 매우 우수한 항염증 효과를 나타내는 소재임을 확인할 수 있었으며, L. plantarum균을 이용한 발효를 통해 층꽃나무가 가진 세포 독성을 낮추어 안전성하고 우수한 효능을 가진 새로운 항염증제로 개발 가능한 소재로 활용될 수 있을 것으로 기대되었다.

Keywords

References

  1. Choi SY, Lee HR (1976) Host preference by the small brown planth opper and green rice leafhopper on barley and water foxtail. Kor J Pl Prot 15: 179-181
  2. Higuchi M, Higashi N, Taki H, Osawa T (1990) Cytolytic mechanisms of activated macrophages. Tumar necrosis factor and L-argininedependent mechanisms acts synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 144: 1434-1441
  3. Chow JC, Young DW, Golenbock DT, Christ WJ, Gusovsky F (1999) Toll-like receptor-4 mediates lipopolysaccharide-induced signal transduction. J Biol Chem 274: 10689-10692 https://doi.org/10.1074/jbc.274.16.10689
  4. Yang F, Tang E, Guan K, Wang CY (2003) IKK${\beta}$ plays an essential role in the phosphorylation of RelA/p65 on serine 536 induced by lipopolysaccharide. J Immunol 170: 5630-5635 https://doi.org/10.4049/jimmunol.170.11.5630
  5. Bhattacharyya S, Ratajczak CK, Vogt SK, Kelle C, Colonna M, Schreiber RD, Muglia LJ (2010) TAK1 targeting B by glucocorticoids determines JNK and $I{\kappa}B$ regulation in Toll-like receptor-stimulated macrophages. Blood 115: 1921-1931 https://doi.org/10.1182/blood-2009-06-224782
  6. Surh YJ, Chun KS, Cha HH, Keum YS, Park KK, Lee SS (2001) Molecular mechanisms underlying chemopreventive activities of antiinfammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of $NF-{\kappa}B$ activation. Mutat Res 480: 243-268
  7. Barnes PJ, Liew FY (1995) Nitric oxide and asthmatic inflammation. Immunol Today 16: 128-130 https://doi.org/10.1016/0167-5699(95)80128-6
  8. Smith WL, Michael GR, DeWitt DL (1996) Prostaglandin endoperoxide Hsynthase (cyclooxygenase)-1 and -2. J Biol Chem 271: 33157-33160 https://doi.org/10.1074/jbc.271.52.33157
  9. Lee TB (2003) Coloured flora of korea. Vol. 2. Hyangmunsa, Seoul, Korea. pp 112-119
  10. Chang KC, Lee DU (2000) Vasodilatory effect of the alkaloid component from the roots of Cynanchum wilfordi Hemsley. Korean J Life Sci 10: 584-590
  11. Bae MJ, Ye EJ (2007) Effect of mycelia extracts from Lentinus edodes musfroom-cultured Lonicera japonica thunbergs on anticancer and antiallergy activities. J Korean Soc Food Sci Nutr 36: 424-430 https://doi.org/10.3746/jkfn.2007.36.4.424
  12. Lee SC, Kim SY, Choi SJ, Lee IS, Jung MY, Yang SM, Chae HJ (2010) Effect of soaking and heat treatment conditions on physicochemical and organoleptic quality of lotus root. Korean J Food Sci Technol 42: 45-49
  13. Yoshikawa K, Harada A, Iseki K, Hashimoto T (2014) Constituents of Caryopteris incana and their antibacterial activity. J Nat Med 68: 231-235 https://doi.org/10.1007/s11418-013-0785-9
  14. Yang HJ, Joo HA, Baek SC, Park JS, Hong SH (2011) Antiinflammatory effects of hwangnyeonhaedok-tang and fermented hwangnyeonhaedok-tang. J Korean Med Ophthalmol Otolaryngol Dermatol 24: 1-15
  15. Doh ES, Chang JP, Kil KJ, Choi MS, Yang JK, Yun CW, Jeong SM, Jung YH, Lee GH (2011) Antioxidative activity and cytotoxicity of fermented Allium victorialis L. extract. Korean J Plant Res 24: 30-39 https://doi.org/10.7732/kjpr.2011.24.1.030
  16. Park MR, Yoo C, Chang YN, Ahn BY (2012) Changes of total polyphenol content of fermented Gastrodia elata blume and radical scavenging. Korean J Plant Res 25: 379-386 https://doi.org/10.7732/kjpr.2012.25.4.379
  17. Park HJ, Jung DH, Joo HM, Kang NS, Jang SA, Lee JG, Sohn EH (2010) The comparative study of anti-allergic and anti-inflammatory effects by fermented red ginseng and red ginseng. Korean J. Plant Res 23: 415-422
  18. Lim HW, Lee YJ, Huang YH, Yoon JY, Lee SH, Kim KH, Lim CJ (2017) Enhancement of skin antioxidant and anti-inflammatory potentials of Agastache rugosa leaf extract by probiotic bacterial fermentation in human epidermal keratinocytes. Microbiol Biotechnol Lett 45: 35-42 https://doi.org/10.4014/mbl.1701.01002
  19. Lee JE, Lee EH, Kim BO, Cho YJ (2017) Biological activities of extracts from Caryopteris incana Miq. J Appl Biol Chem 60: 61-68 https://doi.org/10.3839/jabc.2017.011
  20. Folin O, Denis W (1912) On phosphotungstic-phosphomolybdic compounds as color reagents. J Biol Chem 12: 239-249
  21. Carmichael J, DeGraff WG, Gazder AF, Minna JD, Mitchell JB (1987) Evalution of a tetrazolium based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47: 936-942
  22. Ryu JH, Ahn H, Kim JY, Kim YK (2003) Inhibitory activity of plant extracts on nitric oxide synthesis in LPS-activated macrophage. Phytother Res 17: 485-489 https://doi.org/10.1002/ptr.1180
  23. Kim SH (2005) Effect of the aqueous extracts of Pogostemi Herba on Nitric oxide synthesis and activation of cytokine in macrophage. Dissertation, Ajou University
  24. Weng SX, Sui MH, Chen S, Wang JA, Xu G, Ma J, Shan J, Fang L (2009) Parthenolide inhibits proliferation of vascular smooth muscle cells through induction of $G_{0}/G_{1}$ phase cell cycle arrest. J Zhejiang Univ Sci B 10: 528-535 https://doi.org/10.1631/jzus.B0820351
  25. Stachowska E, Dolegowska B, Dziedziejko V, Rybicka M, Kaczmarczyk M, Bober J, Rac M, Machalinski B, Chlubek D (2009) Prostaglandin $E_{2}$ ($PGE_{2}$) and $thromboxaneA_{2}$ ($TXA_{2}$) synthesis is regulated by conjugated linoleicacids (CLA) in human macrophages. J Physiol Pharmacol 60: 77-85
  26. Yu Y, Fan JJ, Hui Y, Rouzer CA, Marnett LJ, Klein-Szanto AJ, FitzGerald GA, Funk CD (2007) Targeted cyclooxygenase gene (Ptgs) exchange reveals discriminant isoform functionality. J Biol Chem 282: 1498-1506 https://doi.org/10.1074/jbc.M609930200
  27. Lee SJ, Lee DG, Kim MH, Kong CS, Yu KH, Kim YY, Lee SH (2016) Enhancement of anti-inflammatory activity by fermented of Sargassum siliquanstrum. J Life Sci 26: 318-324 https://doi.org/10.5352/JLS.2016.26.3.318
  28. Kwon MS, Mum OJ, Bae MJ, Lee SG, Kim MH, Lee SH, Yu KH, Kim YY, Kong CS (2015) Anti-inflammatory activity of ethanol extracts from Hizikia fusiformis fermented with lactic acid bacteria in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 44: 1450-1457 https://doi.org/10.3746/jkfn.2015.44.10.1450
  29. Cho YJ, Ahn BJ (2008) Anti-inflammatory effect of extracts from Cheongmoknosang (Morus alba L.) in lipopolysaccharide stimulated Raw cells. J Korean Soc Appl Biol Chem 51: 44-48
  30. Jung JE, Cho EJ (2011) Enhancement of anti-inlammatory effect of Zizyphus jujuba var. intermis fruits by fermentation. Cancer Prev Res 14: 57-62
  31. Kim KB, Lee EG, Chai OH, Song CH, Jeong JM (2007) Inhibitory effects of Phyto-extracts mixture (PEM381) on type allergic reaction. J Korean Soc Food Nutr 36: 155-162 https://doi.org/10.3746/jkfn.2007.36.2.155
  32. Lee ES, Kim HJ, Yu JM, Cho YH, Kim DI, Cho YJ, An BJ (2014) Antiinflammatory effect of Polygonum multiflorum extraction in activated RAW 264.7 cells with lipopolysaccharide. Korean J Food Preserv 21: 740-746 https://doi.org/10.11002/kjfp.2014.21.5.740
  33. Tak HM, Kang MJ, Kim KM, Kang DW, Han SY, Shin JH (2014) Antiinflammatory activities of fermented black garlic. J Korean Soc Food Sci Nutr 43: 1527-1534 https://doi.org/10.3746/jkfn.2014.43.10.1527
  34. Park SG, Jeal KH, Jung JY, Back YD, Byun SH, Kim YW, Cho IJ, Park SM, Kim SC (2014) Leonuri fructus ameliorates acute inflammation via the inhibition of $NF-{\kappa}B$-mediated nitric oxide and pro-inflammatory cytokine production. Korean J Orient Physol Pathol 28: 178-185
  35. Dinarello CA (1999) Cytokines as endogenous pyrogens. J Infect Dis 179: 294-304 https://doi.org/10.1086/314577
  36. Delgado AV, McManus AT, Chambers JP (2003) Production of tumor necrosis factor-${\alpha}$, interleukin 1-${\beta}$, interleukin 2 and interleukin 6 by rat leukocyte subpopulations after exposure to substance. P neuropeptides 37: 355-361 https://doi.org/10.1016/j.npep.2003.09.005
  37. Lebovic DI, Betzien F, Chao VA, Garrett EN, Meng YG, Taylor RN (2000) Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-$1{\beta}$. Mol Hum Reprod 6: 269-275 https://doi.org/10.1093/molehr/6.3.269
  38. Yang HJ, Han HS, Lee YJ (2013) Effect of fermented scutellariae radix extract on production of inflammatory mediator in LPS-stimulated mouse macrophges. Kor J Herbology 28: 45-52
  39. Han MH, Lee MH, Hong SH, Choi YH, Moon JS, Song MK, Kim MJ, Shin SJ, Hwang HJ (2014) Comparison of anti-inflammatory activities among ethanol extracts of Sophora flavescens, Glycyrrhiza uralensis and Dictamnus dasycarpus and their mixture in RAW 264.7 murine macrophages. J Life Sci 24: 329-335 https://doi.org/10.5352/JLS.2014.24.3.329