DOI QR코드

DOI QR Code

Static Test of a Composite Wing with Damage Tolerance Design

손상 허용 설계를 적용한 복합재 날개의 정하중 시험

  • Received : 2018.02.20
  • Accepted : 2018.05.09
  • Published : 2018.06.01

Abstract

Static tests of the composite wing structure were performed to verify damage tolerance design. Both 5 cases of DLLT and 3 cases of DULT were completed to meet requirements for static strength. After inducing BVID and open hole damages on the critical areas of the composite wing based on associated regulations, the DULT and fracture test were performed. In major wing parts, the measured strains and displacements agreed well with those of structural analysis. The initial structural fracture occurred at the area having minimum margin of safety as expected by analysis. As a result, it was confirmed that results from analytic model and strength evaluation were similar to behaviors of the composite wing structure.

본 연구에서는 복합재 날개 구조물에 손상허용설계를 적용하고 이를 입증하기 위한 정하중 시험을 수행하였다. 복합재 날개 구조의 정적강도를 입증하기 위하여 5 조건의 설계 제한하중 시험과 3 조건의 설계 극한하중 시험을 수행하였다. 그 다음으로 손상허용 설계를 입증하기 위하여 관련 규정에 따라서 복합재 주익 주요 취약부위에 BVID 10개, Open hole 11개를 생성 후, 설계 극한하중 시험과 파단시험을 실시하였다. 날개 주요 부위의 변위 및 변형률 시험 결과는 구조해석 결과와 비교적 잘 일치하였으며, 파단시험의 최초 파단부위도 최소안전여유를 갖는 부위에서 발생하여 구조해석 모델 및 강도평가 결과가 실제 구조의 정적 거동과 유사함을 확인하였다.

Keywords

References

  1. Mil-Std-1530D, Aircraft Structural Integrity Program(ASIP), Department of Defense(DoD), 2016, pp. 12-14.
  2. Hwang, C. H., Park, C. Y., Hah, S. R., and Kim, C. W., "Static Structural Test and Analysis of Basic Trainer," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 25, No. 3, 1997, pp. 123-130.
  3. Shim, J. Y., Jung, K. W., Lee, H. Y., Lee, S. K., Hwang, G. C. and Ahn, S. M., "KC-100 Full-scale Airframe Static Test," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 42, No. 1, 2014, pp. 67-75. https://doi.org/10.5139/JKSAS.2014.42.1.67
  4. Cho, S. K., Lee, M. K., Cho, C. M., and Lee, K. B., "Static Structural Test of the Large Composite Wing Box," Proceeding of The Korean Society for Aeronautical and Space Science Fall Conference, November 2011, pp. 90-95.
  5. Won, M. S., Seo, B. H., Kwon, J. R., and Joo, Y. S., "Structural Static Test and Finite Element Analysis of Aircraft Fuselage Structure Based on Composite Design," Proceeding of The Korean Society for Aeronautical and Space Science Fall Conference, November 2016, pp. 119-120.
  6. Tserpes, K. I., Papanikos, P., Labeas, G., and Pantelakis, Sp., "Fatigue Damage Accumulation and Residual Strength Assessment of CFRP Laminates," Composite Structures, Vol. 63, 2004, pp. 219-230. https://doi.org/10.1016/S0263-8223(03)00169-7
  7. Chang, F-K., and Lessard, L. B., "Damage Tolerance of Laminated Composites Containing an Open Hole and Subjected to Compressive Loadings," Journal of Composite Materials, Vol. 25, 1991, pp. 2-43. https://doi.org/10.1177/002199839102500101
  8. Fawcett, A. J., and Oakes, G. D., "Boeing Composite Airframe Damage Tolerance and Service Experience," National Institute for Aviation Research, 2006, pp. 1-32.
  9. SAE-CMH-17, Polymer Matrix Composites: Materials Usage, Design and Analysis, 12-3
  10. AC20-107B, Composite Aircraft Structures, FAA, 2009.
  11. FAR Part 23, Airworthiness Standards: Normal, Utility, Acrobatic and Commuter Category Airplanes, 2002.
  12. Overview of Equipment Structures Testing and Evaluation, NLR, 2016.
  13. https://www.mts.com/en/products/producttype/test-components/controllers/flextest-controllers/index.htm
  14. https://www.mts.com/en/products/producttype/test-components/software/aeropro/index.htm