DOI QR코드

DOI QR Code

Reliability Prediction of Electronic Arm Fire Device Applying Sensitivity Analysis

민감도 해석을 적용한 전자식 점화안전장치의 신뢰도 추정

  • Kim, Dong-seong (The 4th Research and Development Institute, Agency of Defense Development) ;
  • Jang, Seung-gyo (The 4th Research and Development Institute, Agency of Defense Development) ;
  • Lee, Hyo-Nam (The 4th Research and Development Institute, Agency of Defense Development) ;
  • Son, Young Kap (Dept. of Mechanical and Automotive Engineering, Andong Nat'l University)
  • Received : 2018.01.23
  • Accepted : 2018.03.26
  • Published : 2018.05.01

Abstract

Reliability prediction of an electronic arm fire device(EAFD) was studied which is applied to prevent accidental ignition in a solid rocket motor. For predicting the reliability, the main components of the EAFD were first defined(Control unit, LEEFI, TBI) and the operating principle of each component was analyzed. Performance modeling of each part is established using selected input variables through system analysis. When complex analysis is required, we approximated it with polynomial equation using response surface method. Monte-Carlo simulation is applied to performance modeling to estimate the design reliability.

고체 로켓 추진기관에서 우발점화를 방지하기 위해 사용하는 전자식 점화안전장치의 신뢰도 예측에 관하여 연구하였다. 신뢰도 예측을 위해 가장 먼저 점화안전장치의 주요 구성품(점화회로, 고전압 기폭관, 격벽착화기)을 정의하고, 각 구성품의 작동원리에 대해 시스템 분석을 수행하였다. 시스템 분석을 통해 선별된 입력 변수를 이용하여 각 부품의 성능 모델링을 수행하였으며, 복잡한 해석이 필요한 경우 반응표면기법을 이용하여 다항식으로 근사하였다. 마지막으로 만들어진 성능 모델링을 기반으로 몬테칼로 시뮬레이션을 적용하여 설계 신뢰도를 예측하였다.

Keywords

References

  1. Army, U. S. TACOM-ARDEC, "Munition Rocket and Missile Motor Ignition System Desgin and Safety Criteria", MIL-STD-1901A, 2002.
  2. "Criteria for Explosive Systems and Devices on Space and Launch Vehicles," AIAA S-113-2005 Standard, American Institute of Aeronautical and Astronautics, Reston, VA, p. 18, 2005.
  3. H. N. Lee and S. Jang, "Reliability Evaluation of a Pin Puller via Monte Carlo Simulation," International Journal of Aeronautical and Space Sciences, Vol. 16, No. 4, 2015, pp. 112-121.
  4. Kim, K., Kim. K. H., Jang, S. G., "Prediction of Insensitive Explosive Charge Detonation by Flyer Impact in Exploding Foil Initiator", 2016 KSPE Fall Conference, 2016, pp. 472-475.
  5. L. Nappert, "An Exploding Foil Initiator System," Defense Research and Development, 1996.
  6. S. C. Schmidt, W. L. Seitz and J. Wackerle, "An Empirical Model to Compute the Velocity Histories of Flyers Driven by Electrically Exploding Foils," Report LA-6809, Los Alamos National Laboratory, 1977.
  7. Back, S. J., Lee, M. W., Son, Y. K., Jang, S. G., "Study of design reliability for LEEFI detonator based on M&S", KSAS 2016 Spring conference, 2016, pp.225-226.
  8. P. L. Stanton "The Accerlation of Flyer Plates by Electrically Exploded Foils," Report SAND-75-0221, Sandia Laboratories, 1975.
  9. Jang, S. G., Back, S. H., "Studies of Through Bulkhead initiation Module using VISAR," Journal of KSPE, Vol.14, No.4, 2010, pp. 932-940.
  10. Q.-C. Chen, Q.-B. Fu, L. Chen and Z.-F. Han, "Parametric Influences on the Sensitivity of Exploding Foil Initiators," Propellants, Explosives, Pyrotechnics, Vol. 39, No. 4, 2014, pp. 558-562. https://doi.org/10.1002/prep.201300108
  11. M. Y. Yilmaz, "Design and Analysis of a High Voltage Exploding Foil Initiator for Missile System," University of Middle East Technical, 2013.
  12. Pyrotechnic System Specification, MSFC Technical Standards (MSFC-SPEC-3635), NASA.
  13. J. A. Sanchidrian, "Analytical and Numerical Study of the Shock Pressure in the Gap Test," Propellants, Explosives, Pyrotechnics, Vol. 18, No. 6, 1993, pp. 325-331. https://doi.org/10.1002/prep.19930180604