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SOME RESULTS ABOUT THE REGULARITIES OF

MULTIFRACTAL MEASURES

Bilel Selmi

Abstract. In this paper, we generelize the Olsen’s density theorem
to any measurable set, allowing us to extend the main results of H.K.
Baek in

(
Proc. Indian Acad. Sci. (Math. Sci.) Vol. 118, (2008), pp.

273-279.
)
. In particular, we tried through these results to improve

the decomposition theorem of Besicovitch’s type for the regularities
of multifractal Hausdorff measure and packing measure.

1. Introduction

The density theorems are used in geometric measure theory to derive
geometric information from given metric information. Classically, they
deal with the distribution of the s-dimensional Hausdorff measure, Hs

and the t-dimensional packing measure, P t. Many researchers had for-
mulated density theorems with respect to Hausdorff measure or packing
measure in some spaces. See for example [1, 4–10, 14, 15, 17–21, 23–26].
Regular sets are defined by density with respect to the Hausdorff and
the packing measure [2, 10–16, 21, 22, 25, 26]. More precisely, Tricot et
al. [21, 25] showed that a subset of Rn has an integer Hausdorff and
packing dimension if it is strongly regular. Moreover, the results of [21]
are improved to a generalized φ-Hausdorff measure in a Polish space
by Mattila and Mauldin in [15]. Later, Baek [3] used the multifractal
density theorems [5, 17, 18] to prove the decomposition theorem for the
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regularities of multifractal Hausdorff measure and packing measure in
Euclidean space which enables him to split a set into regular and irreg-
ular parts. In addition, he extended the Olsen’s density theorem to any
measurable set.

The first aim of this paper is to establish a new version of Olsen’s
density theorem given in [17] under less restrictive hypotheses, which
will enable us to give more generalized variant of the essential results
of Baek in [3]. In particular, we tried through these results to improve
the decomposition theorem for the regularities of multifractal Hausdorff
measure and packing measure in Rn.

Let us recall the multifractal formalism introduced by Olsen in [17].
This formalism was motivated by Olsen’s wish to provide a general math-
ematical setting for the ideas present in the physics literature on multi-
fractals.
Fix an integer n ≥ 1 and denote by P(Rn) the family of compactly sup-
ported Borel probability measures on Rn. Let µ ∈ P(Rn), for q, t ∈ R,
E ⊆ Rn and δ > 0, we define the generalized packing pre-measure,

Pq,tµ (E)

= inf
δ>0

sup

{∑
i

µ(B(xi, ri))
q(2ri)

t;
(
B(xi, ri)

)
i

is a centered δ-packing of E

}
.

In a similar way we define the generalized Hausdorff pre-measure,

Hq,tµ (E)

= sup
δ>0

inf

{∑
i

µ(B(xi, ri))
q(2ri)

t;
(
B(xi, ri)

)
i

is a centered δ-covering of E

}
,

with the conventions 0q =∞ for q ≤ 0 and 0q = 0 for q > 0.

The function Hq,t

µ is δ-subadditive but not increasing and the function

Pq,tµ is increasing but not δ-subadditive. That is the reason why Olsen
introduced the modifications of the generalized Hausdorff and packing
measures Hq,t

µ and Pq,tµ :

Hq,t
µ (E) = sup

F⊆E
Hq,t

µ (F ) and Pq,tµ (E) = inf
E⊆

⋃
i Ei

∑
i

Pq,tµ (Ei)

The functions Hq,t
µ and Pq,tµ are metric outer measures and thus mea-

sures on the Borel family of subsets of Rn. An important feature of the

Hausdorff and packing measures is that Pq,tµ ≤ P
q,t

µ , and there exists an
integer ξ ∈ N, such that Hq,t

µ ≤ ξPq,tµ .
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2. Density Theorems

In this section, we consider µ, ν in P(Rn) and q, t in R. The first
result of this section consists of a density theorem for the multifractal
Hausdorff measure Hq,t

µ and the multifractal packing measure Pq,tµ in Rn.
For x ∈ suppµ, we define the upper and lower (q, t)-densities of ν with
respect to µ by

d
q,t
µ (x, ν) = lim sup

r→0

ν
(
B(x, r)

)
µ
(
B(x, r)

)q
(2r)t

and dq,tµ (x, ν) = lim inf
r→0

ν
(
B(x, r)

)
µ
(
B(x, r)

)q
(2r)t

.

We consider a Borel set E of Rn and we denote byHq,s
µ xE

(resp. Pq,tµ xE
)

the s-dimensional centered Hausdorff measure Hq,s
µ (resp. t-dimensional

centered packing measure Pq,tµ ) restricted to E. The density theorem was
also proven with respect to multifractal Hausdorff measure and packing
measure (see [18]). Let ξ be a constant that appears in Besicovitch’s
covering theorem (see [18]).

Theorem 1. [18] Let E be a Borel subset of suppµ.

1. Assume that Hq,t
µ (E) <∞. We have,

1

ξ
Hq,t
µ (E) inf

x∈E
d
q,t

µ (x, ν) ≤ ν(E) ≤ Hq,t
µ (E) sup

x∈E
d
q,t

µ (x, ν), (2.1)

and

1 ≤ d
q,t

µ (x,Hq,t
µ xE

) ≤ ξ, for Hq,t
µ xE

-a.a. x ∈ E. (2.2)

2. If Pq,tµ (E) <∞, then

Pq,tµ (E) inf
x∈E

dq,tµ (x, ν) ≤ ν(E) ≤ Pq,tµ (E) sup
x∈E

dq,tµ (x, ν), (2.3)

and

dq,tµ (x,Pq,tµ xE
) = 1, for Pq,tµ xE

-a.a. x ∈ E. (2.4)

Remark 1. Let µ, ν ∈ P(Rn) and q, t ∈ R. Assume either q ≤ 0, or
0 < q and µ is a doubling measure. Then for every set E ⊆ suppµ such
that Hq,t

µ (E) <∞ we have

Hq,t
µ (E) inf

x∈E
d
q,t

µ (x, ν) ≤ ν(E) ≤ Hq,t
µ (E) sup

x∈E
d
q,t

µ (x, ν),

and

d
q,t

µ (x,Hq,t
µ xE

) = 1, for Hq,t
µ xE

-a.a. x ∈ E.
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Definition 1. Let E be a Borel subset of suppµ.

1. We say thatHq,t
µ and Pq,tµ are equivalent on E and we writeHq,t

µ (E) '
Pq,tµ (E) if

Hq,t
µ (E) = 0⇔ Pq,tµ (E) = 0.

2. We write Hq,t
µ (E) ∼ Pq,tµ (E) if for any F ⊆ E,

1

ξ
Hq,t
µ (F ) ≤ Pq,tµ (F ) ≤ Hq,t

µ (F ).

3. If ν = Hq,s
µ xE

, we put D
q,t

µ (x,E) = d
q,t

µ (x, ν) and Dq,t
µ (x,E) =

dq,tµ (x, ν). When ν = Pq,tµ xE
, we also define ∆

q,t

µ (x,E) = d
q,t

µ (x, ν)

and ∆q,t
µ (x,E) = dq,tµ (x, ν). IfD

q,t

µ (x,E) = Dq,t
µ (x,E)

(
resp. ∆

q,t

µ (x,E)

= ∆q,t
µ (x,E)

)
, we write Dq,t

µ (x,E)
(
resp. ∆q,t

µ (x,E)
)

for the com-
mon value.

In the sequel, we prove our density theorems. In particular, we extend
the Olsen’s density theorem for the multifractal Hausdorff measure and
packing measure in Rn.

Proposition 1. Let E be a Borel subset of suppµ such that Pq,tµ (E) <
+∞.

1. If Dq,t
µ (x,E) = 1 for Hq,t

µ -a.e. x ∈ E, then Pq,tµ (E) = Hq,t
µ (E).

2. If ∆
q,t

µ (x,E) = 1 for Pq,tµ -a.e. x ∈ E, then Hq,t
µ (E) ' Pq,tµ (E).

Proof. Follows immediately from Theorem 1.

Theorem 2. Let E be a Borel subset of suppµ such that Pq,tµ (E) <
∞.

1. If Hq,t
µ (E) ∼ Pq,tµ (E) then 1 ≤ Dq,t

µ (x,E) ≤ D
q,t

µ (x,E) ≤ ξ for
Pq,tµ -a.e. x ∈ E.

2. If 1 ≤ Dq,t
µ (x,E) ≤ D

q,t

µ (x,E) ≤ ξ for Pq,tµ -a.e. x ∈ E, then

Hq,t
µ (E) ' Pq,tµ (E).

Proof. 1. From (2.2), if Hq,t
µ (E) <∞, we have

1 ≤ D
q,t

µ (x,E) ≤ ξ for Hq,t
µ -a.e. x ∈ E. (2.5)

The hypothesis Hq,t
µ (E) ∼ Pq,tµ (E) implies that

1

ξ
Hq,t
µ (F ) ≤ Pq,tµ (F ) ≤ Hq,t

µ (F ), for any F ⊂ E. (2.6)
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Thanks to (2.5) and (2.6), we have

1 ≤ D
q,t

µ (x,E) ≤ ξ for Pq,tµ -a.e. x ∈ E. (2.7)

Now, we consider the set F =
{
x ∈ E, Dq,t

µ (x,E) < 1
}
, and for

m ∈ N∗

Fm =

{
x ∈ E, Dq,t

µ (x,E) < 1− 1

m

}
.

From (2.3) and (2.6), we have

Pq,tµ (Fm) ≤ Hq,t
µ (Fm) ≤ Pq,tµ (Fm)

(
1− 1

m

)
.

This implies that Pq,tµ (Fm) = 0. As F =
⋃
m Fm, we obtain

Pq,tµ (F ) = 0, i.e.

Dq,t
µ (x,E) ≥ 1 for Pq,tµ -a.a. x ∈ E. (2.8)

Finally, (2.7) and (2.8) give the result.

2. Consider the set

F =
{
x ∈ E, 1 ≤ Dq,t

µ (x,E) ≤ D
q,t

µ (x,E) ≤ ξ
}
.

From Theorem 1 (assertion 2), we have

Pq,tµ (E) = Pq,tµ (F ) ≤ Hq,t
µ (F ) ≤ Hq,t

µ (E) ≤ ξPq,tµ (E)

and then, Hq,t
µ (E) ' Pq,tµ (E).

Theorem 3. Let E be a Borel subset of suppµ such that Pq,tµ (E) <
∞.

1. If Hq,t
µ (E) ∼ Pq,tµ (E) then 1 ≤ ∆q,t

µ (x,E) ≤ ∆
q,t

µ (x,E) ≤ ξ for
Pq,tµ -a.e. x ∈ E.

2. If 1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤ ξ for Pq,tµ -a.e. x ∈ E, then
Hq,t
µ (E) ' Pq,tµ (E).

Proof. 1. Thanks to (2.4), if Pq,tµ (E) <∞, we have

1 = ∆q,t
µ (x,E) for Pq,tµ -a.e. x ∈ E. (2.9)

Since Hq,t
µ (E) ∼ Pq,tµ (E), then

1

ξ
Hq,t
µ (F ) ≤ Pq,tµ (F ) ≤ Hq,t

µ (F ), for any F ⊂ E. (2.10)
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Using (2.9) and (2.10), we obtain

1 = ∆q,t
µ (x,E) for Hq,t

µ -a.e. x ∈ E. (2.11)

Now, we consider the set F =
{
x ∈ E,∆

q,t

µ (x,E) > ξ
}
, and for

m ∈ N∗

Fm =

{
x ∈ E,∆q,t

µ (x,E) > ξ +
1

m

}
.

Using (2.1), (2.10), we get(
ξ +

1

m

)
1

ξ
Hq,t
µ (Fm) ≤ Pq,tµ (Fm) ≤ Hq,t

µ (Fm).

This implies that Hq,t
µ (Fm) = 0. As F =

⋃
m Fm, we obtain

Hq,t
µ (F ) = 0 and so, Pq,tµ (F ) = 0, i.e.

∆
q,t

µ (x,E) ≤ ξ for Pq,tµ -a.e. x ∈ E. (2.12)

Finally, (2.11) and (2.12) yields to the result.
2. We consider the set

F =
{
x ∈ E, 1 ≤ ∆q,t

µ (x,E) ≤ ∆
q,t

µ (x,E) ≤ ξ
}
.

Using Theorem 1 (assertion 1) and since, 1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤
ξ for Pq,tµ -a.e. x ∈ E, we get

1

ξ
Hq,t
µ (E) ≤ Pq,tµ (E) = Pq,tµ (F ) ≤ ξHq,t

µ (F ) ≤ ξHq,t
µ (E).

Remark 2. The results in Theorems 2 and 3 are a generalization
of the Olsen’s density theorem in [17]. It is clear that if ξ = 1 and
E ⊆ suppµ such that Pq,tµ (E) < ∞, then the following assertions are
equivalent

1. Hq,t
µ (E) = Pq,tµ (E).

2. Dq,t
µ (x,E) = 1 = D

q,t

µ (x,E) for Pq,tµ -a.e. x ∈ E.

3. ∆q,t
µ (x,E) = 1 = ∆

q,t

µ (x,E) for Pq,tµ -a.e. x ∈ E.

Question. If µ is not doubling and q > 0, then there exists a subset E
of suppµ such that Hq,t

µ (E) ∼ Pq,tµ (E) if and only if Hq,t
µ (E) ' Pq,tµ (E)?
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3. Regularities of multifractal measures

In this section, we discuss the decomposition theorem for the reg-
ularities of multifractal measures. In [3], Baek proved the following
statement:

Theorem 4. [3] Let µ be a doubling measure and E a Borel subset
of suppµ. Consider the sets

F =
{
x ∈ E, Dq,t

µ (x,E) = D
q,t

µ (x,E)
}
,

G =
{
x ∈ E, ∆q,t

µ (x,E) = ∆
q,t

µ (x,E)
}
.

1. If Hq,t
µ (E) <∞, then

(a) D
q,t

µ (x,F) = Dq,t
µ (x,F), for Hq,t

µ -a.e. x ∈ F .
(b) Hq,t

µ

({
x ∈ E \ F , Dq,t

µ (x,E \ F) = D
q,t

µ (x,E \ F)
})

= 0.

2. If Pq,tµ (E) <∞, then

(a) ∆
q,t

µ (x,G) = ∆q,t
µ (x,G), for Pq,tµ -a.e. x ∈ G.

(b) Pq,tµ
({
x ∈ E \ G, ∆q,t

µ (x,E \ G) = ∆
q,t

µ (x,E \ G)
})

= 0.

Now, we extend the decomposition theorem of Baek for the regulari-
ties of the multifractal Hausdorff and packing measures in Rn.

Theorem 5. Let E be a Borel subset of suppµ. Consider the sets

F =
{
x ∈ E, 1 ≤ Dq,t

µ (x,E) ≤ D
q,t

µ (x,E) ≤ ξ
}
,

G =
{
x ∈ E, 1 ≤ ∆q,t

µ (x,E) ≤ ∆
q,t

µ (x,E) ≤ ξ
}
.

1. If Hq,t
µ (E) <∞, then

(a) 1 ≤ D
q,t

µ (x, F ) ≤ Dq,t
µ (x, F ) ≤ ξ, for Hq,t

µ -a.e. x ∈ F .
(b) Hq,t

µ

({
x ∈ E \ F, 1 ≤ Dq,t

µ (x,E \ F ) ≤ D
q,t

µ (x,E \ F ) ≤ ξ
})

=

0.
2. If Pq,tµ (E) <∞, then

(a) 1 ≤ ∆
q,t

µ (x,G) ≤ ∆q,t
µ (x,G) ≤ ξ, for Pq,tµ -a.e. x ∈ G.

(b) Pq,tµ
({
x ∈ E \G, 1 ≤ ∆q,t

µ (x,E \G) ≤ ∆
q,t

µ (x,E \G) ≤ ξ
})

=

0.
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To prove this theorem, we need the following lemmas

Lemma 1. Let E be a Borel subset of suppµ and A be a Hq,t
µ -

measurable subset of E.

1. Suppose that Hq,t
µ (E) <∞, then

D
q,t

µ (x,E) = D
q,t

µ (x,A) and Dq,t
µ (x,E) = Dq,t

µ (x,A), for Hq,t
µ -a.e. x ∈ A.

2. Suppose that Pq,tµ (E) <∞, then

∆
q,t

µ (x,E) = ∆
q,t

µ (x,A) and ∆q,t
µ (x,E) = ∆q,t

µ (x,A), for Hq,t
µ -a.e. x ∈ A.

Proof. Let θ ∈ P(Rn) and define the measure θxE by θxE(B) = θ(E∩
B), for all Borel set B. Let ν = θxE. Then, we have

d
q,t

µ (x, ν) = d
q,t

µ (x, νxA) and dq,tµ (x, ν) = dq,tµ (x, νxA), for Hq,t
µ -a.a. on A.(3.1)

In fact, it is clear that

dq,tµ (x, ν) ≥ dq,tµ (x, νxA) and d
q,t

µ (x, ν) ≥ d
q,t

µ (x, νxA).

Let’s set λ(B) = ν(B \ A), for all Borel set B. Then,

ν(B) = ν
(
B ∩ (Ac ∪ A)

)
= ν(B \ A) + ν(B ∩ A) = λ(B) + νxA(B).

A simple calculation shows that

dq,tµ (x, ν) ≤ dq,tµ (x, νxA)+d
q,t

µ (x, λ) and d
q,t

µ (x, ν) ≤ d
q,t

µ (x, νxA)+d
q,t

µ (x, λ).

It becomes enough to prove that d
q,t

µ (x, λ) = 0. For any integer k 6= 0,
let

Ak =

{
x ∈ A, d

q,t

µ (x, λ) ≥ 1

k

}
.

Then Ak ⊂ A, for any k ≥ 1. So, by (2.1), we have

0 ≤ 1

ξk
Hq,t
µ (Ak) ≤ λ(Ak) = ν(Ak \ A) = ν(∅) = 0, for all k ≥ 1,

so, we get Hq,t
µ (Ak) = 0 for all k ≥ 1 and d

q,t

µ (x, λ) = 0, for Hq,t
µ -a.a. on

A, which leads to (3.1).

Now, in (3.1), taking ν = Hq,t
µ xE

(resp. ν = Pq,tµ xE
) we obtain assertion

(1) (resp. assertion (2)) of the Lemma.

Lemma 2. Let E be a Borel subset of suppµ, such that Pq,tµ (E) <∞.

For K =
{
x ∈ E, ∆

q,t

µ (x,E) < +∞
}
, we have for a Borel subset L of

K such that Hq,t
µ (L) = 0, Pq,tµ (L) = 0.
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Proof. It is sufficient to take ν = Pq,tµ xE
in (2.1).

Proof of Theorem 5.

1. Since Hq,t
µ (E) < ∞ and it is sufficient to take A = F in assertion

(1) of Lemma 1, we have D
q,t

µ (x, F ) = D
q,t

µ (x,E) and Dq,t
µ (x, F ) =

Dq,t
µ (x,E), for Hq,t

µ -a.e. x ∈ F . So, 1 ≤ Dq,t
µ (x, F ) ≤ D

q,t

µ (x, F ) ≤
ξ, for Hq,t

µ -a.e. x ∈ F .

Taking A = E \ F in assertion (1) of Lemma 1, we get D
q,t

µ (x,E \
F ) = D

q,t

µ (x,E) and Dq,t
µ (x,E \ F ) = Dq,t

µ (x,E) for Hq,t
µ -a.e. x ∈

E \ F . Hence,

Hq,t
µ

({
x ∈ E \ F, 1 ≤ Dq,t

µ (x,E \ F ) ≤ D
q,t

µ (x,E \ F ) ≤ ξ
})

= 0.

2. Since Pq,tµ (E) <∞, from (2.4), we obtain

∆q,t
µ (x,G) = 1 for Pq,tµ -a.e. x ∈ G and 1 ≤ ∆q,t

µ (x,G) ≤ ξ for Pq,tµ -a.e. x ∈ G.

By Lemma 1, ∆
q,t

µ (x,G) = ∆
q,t

µ (x,E), for Hq,t
µ -a.e. x ∈ G. So,

1 ≤ ∆
q,t

µ (x,G) ≤ ξ, for Hq,t
µ -a.e. x ∈ G. Using Lemma 2, we have

1 ≤ ∆
q,t

µ (x,G) ≤ ξ, for Pq,tµ -a.e. x ∈ G and 1 ≤ ∆q,t
µ (x,G) ≤

∆
q,t

µ (x,G) ≤ ξ, for Pq,tµ -a.e. x ∈ G. Due to Lemma 1, we have

∆
q,t

µ (x,E \ G) = ∆
q,t

µ (x,E) and ∆q,t
µ (x,E \ G) = ∆q,t

µ (x,E), for

Hq,t
µ -a.e. x ∈ E \G. Since ∆

q,t

µ (x,E) ≤ ξ < +∞, Lemma 2 implies

that ∆
q,t

µ (x,E \ G) = ∆
q,t

µ (x,E) and ∆q,t
µ (x,E \ G) = ∆q,t

µ (x,E),
for Pq,tµ -a.e. x ∈ E \G. Hence,

Pq,tµ
({
x ∈ E \G, 1 ≤ ∆q,t

µ (x,E \G) ≤ ∆
q,t

µ (x,E \G) ≤ ξ
})

= 0.

Our purpose in the following theorem is to prove the result of Theorem
4 under less restrictive hypotheses.

Theorem 6. Let E be a Borel subset of suppµ.

1. If Hq,t
µ (E) <∞, then

(a) D
q,t

µ (x,F) = Dq,t
µ (x,F), for Hq,t

µ -a.e. on F .
(b) Hq,t

µ

({
x ∈ E \ F , Dq,t

µ (x,E \ F) = D
q,t

µ (x,E \ F)
})

= 0.

2. If Pq,tµ (E) <∞, then
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(a) ∆
q,t

µ (x,G) = ∆q,t
µ (x,G), for Pq,tµ -a.e. on G.

(b) Pq,tµ
({
x ∈ E \ G, ∆q,t

µ (x,E \ G) = ∆
q,t

µ (x,E \ G)
})

= 0.

Proof. The proof is similar to the one of Theorem 5.

Remark 3. We obtain the conclusion of Theorem 4 under less re-
strictive hypotheses on measure µ (we need not to assume that µ is a
doubling measure).

Definition 2. Let (X,B, µ) be a measure space and E, F in B. We
will say that E is a subset of F µ-almost everywhere and write E ⊆ F
for µ-a.e., if µ(F \ E) = 0.

We have the following general results.

Proposition 2. Let E be a Borel subset of suppµ such that Pq,tµ (E) <
+∞.

1. If B ⊆
{
x ∈ E; Dq,t

µ (x,E) = 1
}

for Hq,t
µ -a.e., then Hq,t

µ (B) =

Pq,tµ (B).

2. If B ⊆
{
x ∈ E; ∆

q,t

µ (x,E) = 1
}

for Pq,tµ -a.e., then Hq,t
µ (B) '

Pq,tµ (B).

Proof. Follows immediately from Lemmas 1 and 2.

Theorem 7. Let E be a Pq,tµ -measurable set with Pq,tµ (E) <∞ and
let B be a measurable subset of E.

1. If Hq,t
µ (B) ∼ Pq,tµ (B) then B ⊆ G for Pq,tµ -a.e..

2. If B ⊆ G for Pq,tµ -a.e., then Hq,t
µ (B) ' Pq,tµ (B).

Proof. Let B be a measurable subset of E. Without loss of generality,
we may assume that Pq,tµ (B) > 0.

1. We suppose that Hq,t
µ (B) ∼ Pq,tµ (B). By Theorem 3, we have

1 ≤ ∆q,t
µ (x,B) ≤ ∆

q,t

µ (x,B) ≤ ξ, for Pq,tµ -a.e. x ∈ B and so,

1 ≤ ∆q,t
µ (x,B) ≤ ∆

q,t

µ (x,B) ≤ ξ, for Hq,t
µ -a.e. x ∈ B . Using the

assertion (2) of Lemma 1, we obtain

∆q,t
µ (x,B) = ∆q,t

µ (x,E) and ∆
q,t

µ (x,B) = ∆
q,t

µ (x,E) for Hq,t
µ -a.e. x ∈ B,

and so,

1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤ ξ, for Hq,t
µ -a.e. x ∈ B.
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Since ∆
q,t

µ (x,E) < +∞, by using Lemma 2, we get

1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤ ξ, for Pq,tµ -a.e. x ∈ B.

Therefore, B ⊆ G for Pq,tµ -a.e..
2. Now, we suppose that B ⊆ G for Pq,tµ -a.e., which implies that

1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤ ξ, for Pq,tµ -a.e. x ∈ B. Then, we

easily see that 1 ≤ ∆q,t
µ (x,E) ≤ ∆

q,t

µ (x,E) ≤ ξ, for Hq,t
µ -a.e. x ∈ B.

By using Lemma 1, we obtain

∆q,t
µ (x,B) = ∆q,t

µ (x,E) and ∆
q,t

µ (x,B) = ∆
q,t

µ (x,E), for Hq,t
µ -a.e. x ∈ B.

We have 1 ≤ ∆q,t
µ (x,B) ≤ ∆

q,t

µ (x,B) ≤ ξ, for Hq,t
µ -a.e. x ∈ B.

Now, from Lemma 2, we get 1 ≤ ∆q,t
µ (x,B) ≤ ∆

q,t

µ (x,B) ≤ ξ, for
Pq,tµ -a.e. x ∈ B. Finally, by Theorem 2, we have

Hq,t
µ (B) ' Pq,tµ (B).

Theorem 8. Let E be a Pq,tµ -measurable set with Pq,tµ (E) <∞ and
let B be a measurable subset of E.

1. If Hq,t
µ (B) ∼ Pq,tµ (B), then B ⊆ F for Pq,tµ -a.e..

2. If B ⊆ F for Pq,tµ -a.e., then Hq,t
µ (B) ' Pq,tµ (B).

Proof. The proof is similar to the one of Theorem 7.

Remark 4. The results in Theorems 7 and 8 are generalizations of
those of Baek [3]. Notice that assertions (1) and (2) of Theorem 7 (resp.
Theorem 8) are equivalent in the case where ξ = 1. In particular, we
obtain the conclusion of Proposition 3.2 and Theorem 3.5 in [3].
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