DOI QR코드

DOI QR Code

Evaluation of the stability of sandblasted, large-grit, acid-etched implants with tapered straight body design

테이퍼드 직선형 SLA 임플란트의 안정성 평가

  • Kim, Yong-Gun (Department of Periodontology, School of Dentistry, Kyungpook National University) ;
  • Lee, Kyu-Bok (Advanced Dental Device Development Institute, Kyungpook National University)
  • 김용건 (경북대학교 치의학전문대학원 치주과학교실) ;
  • 이규복 (경북대학교 첨단치과의료기기개발연구소)
  • Received : 2018.01.25
  • Accepted : 2018.03.02
  • Published : 2018.06.30

Abstract

Purpose: Implant surface modification and implant design are the principle targets for achieving successful primary stability. The aim of this study was to measure implant stability quotient (ISQ) values of sandblasted, large-grit, acid-etched (SLA) implants with tapered straight body design during the healing period, and to determine the various factors affecting implant stability. Materials and Methods: To measure implant stability, resonance frequency analysis (RFA) was performed in 26 patients (13 women and 13 men) with 44 SLA implants with tapered straight body design. Implant stability (ISQ values) was evaluated at baseline and healing abutment connection (12 weeks), and the correlations between RFA and insertion torque (IT), bone quality, and jawbone were determined. Results: The mean ISQ value of the implants was $69.4{\pm}10.2$ at the time of implant placement (baseline) and $81.4{\pm}6.9$ at the time of healing abutment connection (P < 0.05). Significant differences were found between RFA and bone quality and between RFA and jawbone (P < 0.05). No significant differences were found between RFA and IT, insertion area, fixture diameter, and implant length (P > 0.05). Conclusion: ISQ values of SLA implants with tapered straight body design were high at baseline and healing abutment connection. It was concluded that SLA implants with tapered straight body design show improved primary and secondary stability, and that immediate or early loading may be applicable.

목적: 임플란트 표면의 특성과 임플란트 디자인은 성공적인 초기 고정을 얻는데 중요한 변수이다. 이 연구의 목적은 치유기간 동안 테이퍼드 직선형 디자인을 가진 SLA (Sandblasted and Acid-etched) 임플란트의 ISQ (Implant Stability Quotient) 값을 측정하고 임플란트의 안정성에 미치는 영향을 평가하는 것이다. 연구 재료 및 방법: 임플란트의 안정성을 측정하기 위하여 26명의 환자(여자 13명, 남자 13명)의 44개 임플란트에 대한 자기공명주파수분석(Resonance Frequency Analysis)을 실시하였다. 골질 및 골량에 대한 임상적 평가는 Lekholm & Zarb (1985)의 기준에 따라 시행하였다. 시간경과에 따른 임플란트 안정성변화(총 ISQ 값)를 고정체 식립 시 그리고 12주후 치유지대주 연결 시 측정하고 RFA와 식립토크, RFA와 골질, RFA와 상, 하악골 사이의 상관관계를 평가하였다. 결과: 임플란트의 평균 ISQ값은 임플란트 식립 당시(기준선) $69.4{\pm}10.2$, 치유지대주연결에서(두번째수술) $81.4{\pm}6.9$였다(P < 0.05). RFA와 골질, RFA와 상하악골 사이에 유의한 차이가 있었다(P < 0.05). RFA와 식립토크, 식립부위, 고정체 직경, 임플란트 길이 사이에는 유의한 차이가 없었다(P > 0.05). 결론: 본 연구의 제한된 범위내에서 테이퍼드 직선형 디자인을 가진 SLA 임플란트의 ISQ값은 고정체 식립시와 치유지대주 연결 시 모두 높은 값을 보였다. 따라서 테이퍼드 직선형 디자인을 가진 SLA 임플란트는 초기안정성 및 2차 안정성을 향상시킬 수 있으며, 즉시 또는 초기하중을 적용할 수 있을것으로 사료된다.

Keywords

References

  1. Meredith N. Assessment of implant stability as a prognostic determinant. Int J Prosthodont 1998;11: 491-501.
  2. Cochran DL, Schenk RK, Lussi A, Higginbottom FL, Buser D. Bone response to unloaded and loaded titanium implants with a sandblasted and acidetched surface: a histometric study in the canine mandible. J Biomed Mater Res 1998;40:1-11. https://doi.org/10.1002/(SICI)1097-4636(199804)40:1<1::AID-JBM1>3.0.CO;2-Q
  3. Brunski JB. Biomechanical factors affecting the bone-dental implant interface. Clin Mater 1992;10: 153-201. https://doi.org/10.1016/0267-6605(92)90049-Y
  4. Sennerby L, Roos J. Surgical determinants of clinical success of osseointegrated oral implants: a review of the literature. Int J Prosthodont 1998;11: 408-20.
  5. Klokkevold PR, Nishimura RD, Adachi M, Caputo A. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin Oral Implants Res 1997;8:442-7. https://doi.org/10.1034/j.1600-0501.1997.080601.x
  6. Piattelli A, Manzon L, Scarano A, Paolantonio M, Piattelli M. Histologic and histomorphometric analysis of the bone response to machined and sandblasted titanium implants: an experi- mental study in rabbits. Int J Oral Maxillofac Implants1998;13:805-10.
  7. Yeo IS, Han JS, Yang JH. Biomechanical and histomorphometric study of dental implants with different surface characteristics. J Biomed Mater Res B Appl Biomater 2008;87:303-11.
  8. Glauser R, Sennerby L, Meredith N, Rée A, Lun- dgren A, Gottlow J, Hämmerle CH. Resonance frequency analysis of implants subjected to immediate or earlyfunctional occlusal loading. Successful vs. failing implants. Clin Oral Implant Res 2004;15:428-34. https://doi.org/10.1111/j.1600-0501.2004.01036.x
  9. Meredith N, Alleyne D, Cawley P. Quantitative determination of the stability of the implant-tissue interface using resonance frequency analysis. Clin Oral Implants Res 1996;7:261-7. https://doi.org/10.1034/j.1600-0501.1996.070308.x
  10. Sim CP, Lang NP. Factors influencing resonance frequency analysis assessed by Osstell mentor during implant tissue integration: I. Instrument positioning, bone structure, implant length. Clin Oral Implants Res 2010;21:598-604. https://doi.org/10.1111/j.1600-0501.2009.01878.x
  11. Ostman PO, Hellman M, Wendelhag I, Sennerby L. Resonance frequency analysis measurements of implants at placement surgery. Int J Prosthodont 2006;19:77-83.
  12. Rowan M, Lee D, Pi-Anfruns J, Shiffer P, Aghaloo T, Moy PK. Mechanical versus biological stability of immediate and delayed implant placement using resonance frequency analysis. J Oral Maxillofac Surg 2015;73:253-7. https://doi.org/10.1016/j.joms.2014.09.024
  13. Guler AU, Sumer M, Duran I, Sandikci EO, Telcioglu NT. Resonance frequency analysis of 208 Straumann dental implants during the healing period. J Oral Implantol 2013;39:161-7. https://doi.org/10.1563/AAID-JOI-D-11-00060
  14. Boronat Lopez A, Balaguer Martínez J, Lamas Pelayo J, Carrillo García C, Penarrocha Diago M. Resonance frequency analysis of dental implant stability during the healing period. Med Oral Patol Oral Cir Bucal. 2008;13:E244-7.
  15. Rabel A, Kohler SG, Schmidt-Westhausen AM. Clinical study on the primary stability of two dental implant systems with resonance frequency analysis. Clin Oral Investig 2007;11:257-65. https://doi.org/10.1007/s00784-007-0115-2
  16. Trisi P, Perfetti G, Baldoni E, Berardi D, Cola- giovanni M, Scogna G. Implant micromotion is related to peak insertion torque and bone density. Clin Oral Implants Res 2009;20:467-71. https://doi.org/10.1111/j.1600-0501.2008.01679.x
  17. Barone A, Alfonsi F, Derchi G, Tonelli P, Toti P, Marchionni S, Covani U. The Effect of Insertion Torque on the Clinical Outcome of Single Im- plants: A Randomized Clinical Trial. Clin Implant Dent Relat Res 2016;18:588-600. https://doi.org/10.1111/cid.12337
  18. Lai HC, Zhuang LF, Zhang ZY. Stability of implants placed in different bone types. Zhonghua Kou Qiang Yi Xue Za Zhi 2007;42:292-3.
  19. Turkyilmaz I, Sennerby L, McGlumphy EA, Tozüm TF. Biomechanical aspects of primary implant stability: a human cadaver study. Clin Implant Dent Relat Res 2009;11:113-9. https://doi.org/10.1111/j.1708-8208.2008.00097.x
  20. Huang HM, Lee SY, Yeh CY, Lin CT. Resonance frequency assessment of dental implant stability with various bone qualities: a numerical approach. Clin Oral Implants Res 2002;13:65-74. https://doi.org/10.1034/j.1600-0501.2002.130108.x
  21. Friberg B, Sennerby L, Meredith N, Lekholm U. A comparison between cutting torque and resonance frequency measurements of maxillary implants. A 20-month clinical study. Int J Oral Maxillofac Surg 1999;28:297-303. https://doi.org/10.1016/S0901-5027(99)80163-5
  22. Bischof M, Nedir R, Szmukler-Moncler S, Bernard JP, Samson J. Implant stability measurement of delayed and immediately loaded implants during heal- ing. Clin Oral Implants Res 2004;15:529-39. https://doi.org/10.1111/j.1600-0501.2004.01042.x
  23. Horwitz J, Zuabi O, Peled M. Resonance frequency analysis in immediate loading of dental implants. Refuat Hapeh Vehashinayim 2003;20:80-8.
  24. Polizzi G, Rangert B, Lekholm U, Gualini F, Lindstrom H. Branemark System Wide Platform implants for single molar replacement: clinical evaluation of prospective and retrospective materials. Clin Implant Dent Relat Res 2000;2:61-9. https://doi.org/10.1111/j.1708-8208.2000.tb00107.x
  25. Calandriello R, Tomatis M, Vallone R, Rangert B, Gottlow J. Immediate occlusal loading of single lower molars using Branemark System Wide-Platform TiUnite implants: an interim report of a prospective open-ended clinical multicenter study. Clin Implant Dent Relat Res 2003;5:74-80. https://doi.org/10.1111/j.1708-8208.2003.tb00018.x
  26. Barewal RM, Oates TW, Meredith N, Cochran DL. Resonance frequency measurement of implant stability in vivo on implants with a sandblasted and acid-etched surface. Int J Oral Maxillofac Implants 2003;18:641-51.
  27. Balleri P, Cozzolino A, Ghelli L, Momicchioli G, Varriale A. Stability measurements of osseointegrated implants using Osstell in partially edentulous jaws after 1 year of loading: a pilot study. Clin Implant Dent Relat Res 2002;4:128-32. https://doi.org/10.1111/j.1708-8208.2002.tb00162.x
  28. Lazzara R, Siddiqui AA, Binon P, Feldman SA, Weiner R, Phillips R, Gonshor A. Retrospectivemulticenter analysis of 3i endosseous dental implants placed over a five-year period. Clin Oral Implants Res 1996;7:73-83. https://doi.org/10.1034/j.1600-0501.1996.070109.x
  29. Nedir R, Bischof M, Szmukler-Moncler S, Bernard JP, Samson J. Predicting osseointegration by means of implant primary stability. Clin Oral Implants Res 2004;15:520-8. https://doi.org/10.1111/j.1600-0501.2004.01059.x