DOI QR코드

DOI QR Code

High Temperature Deformation Behavior of L12 Modified Titanium Trialuminides Doped with Chromium and Copper

크롬 및 구리로 치환한 L12 Titanium Trialuminides합금의 고온변형거동

  • Han, Chang-Suk (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Jin, Sung-Yooun (Dept. of ICT Automotive Engineering, Hoseo University) ;
  • Bang, Hyo-In (Dept. of ICT Automotive Engineering, Hoseo University)
  • 한창석 (호서대학교 자동차ICT공학과) ;
  • 진성윤 (호서대학교 자동차ICT공학과) ;
  • 방효인 (호서대학교 자동차ICT공학과)
  • Received : 2018.04.17
  • Accepted : 2018.05.12
  • Published : 2018.06.27

Abstract

Crystal structure of the $L1_2$ type $(Al,X)_3Ti$ alloy (X = Cr,Cu) is analyzed by X-ray diffractometry and the nonuniform strain behavior at high temperature is investigated. The lattice constants for the $L1_2$ type $(Al,X)_3Ti$ alloys decrease in the order of the atomic number of the substituted atom X, and the hardness tends to increase. In a compressive test at around 473K for $Al_{67.5}Ti_{25}Cr_{7.5}$, $Al_{65}Ti_{25}Cr_{10}$ and $Al_{62.5}Ti_{25}Cu_{12.5}$ alloys, it is found that the stress-strain curves showed serration, and deformation rate dependence appeared. It is assumed that the generation of serration is due to dynamic strain aging caused by the diffusion of solute atoms. As a result, activation energy of 60-95 kJ/mol is obtained. This process does not require direct involvement. In order to investigate the generation of serrations in detail, compression tests are carried out under various conditions. As a result, in the strain rate range of this experiment, serration is found to occur after 470K at a certain critical strain. The critical strain increases as the strain rate increases at constant temperature, and the critical strain tends to decrease as temperature rises under constant strain rate. This tendency is common to all alloys produced. In the case of this alloy system, the serration at around 473K corresponds to the case in which the dislocation velocity is faster than the diffusion rate of interstitial solute atoms at low temperature.

Keywords

References

  1. T. B. Massalski, J. L. Murray, L. H. Bennett, and H. Baker, Binary Alloy Phase Diagrams, 1st ed., p.157, American Society for Metals (1986).
  2. M. Yamaguchi, Y. Umakoshi, and T. Yamane, Phil. Mag., 55A, 301 (1987).
  3. A. Raman and K. Schubert, Z. Metallkde., 56, 99 (1965).
  4. D. H. Cheon, J. G. Lee, M. H. Oh, and D. M. Wi, Korean J. Met. Mater., 42, 14 (2004).
  5. E. P. George, D. P. Pope, C. L. Fu, and J. H. Schneibel, ISIJ International, 31, 1063 (1991). https://doi.org/10.2355/isijinternational.31.1063
  6. D. B. Lee, S. H. Kim, and K. Niinobe, Mater. Sci. Eng., 290, 1 (2000). https://doi.org/10.1016/S0921-5093(00)00956-4
  7. M. Heilmaier, H. Saage, K. J. Mirpuri, J. Eckert, L. Schultz, and P. Singh, Mater. Sci. Eng., A, 329/331, 106 (2002). https://doi.org/10.1016/S0921-5093(01)01540-4
  8. L. Potez, G. Lapasset, and L. P. Kubin, Scri. Met. et Mater., 26, 841 (1992). https://doi.org/10.1016/0956-716X(92)90449-O
  9. A. H. Cottrell, Philos. Mag., 44, 829 (1953). https://doi.org/10.1080/14786440808520347
  10. R. K. Ham, and D. Jaffrey, Philos. Mag., 14, 247 (1967).
  11. W. Charnock, Philos. Mag., 20, 427 (1969). https://doi.org/10.1080/14786436908228714
  12. R. Sarmah and G. Ananthakrishna, Acta Mater., 91, 192 (2015). https://doi.org/10.1016/j.actamat.2015.03.027
  13. Y. Nakayama, J. Japan Inst. Met., 65, 1 (2001). https://doi.org/10.2320/jinstmet1952.65.1_1
  14. Y. Nakayama and K. Naruke, J. Japan Inst. Light Met., 51, 346 (2001). https://doi.org/10.2464/jilm.51.346
  15. Y. Nakayama, K. Naruke, and M. Furuta, J. Japan Inst. Light Met., 52, 460 (2002). https://doi.org/10.2464/jilm.52.460
  16. M. Furuta, K. Naruke, Y. Yaginuma, K. Okada, T. Shinizu, and Y. Nakayama, J. Japan Inst. Light Met., 52, 586 (2002). https://doi.org/10.2464/jilm.52.586
  17. H. Mabuchi, A. Kito, and M. Nakamoto, Intermetallics, 4, 193 (1996). https://doi.org/10.1016/0966-9795(96)00005-2
  18. J. M. Cowley, Phys. Rev., 77, 669 (1950). https://doi.org/10.1103/PhysRev.77.669
  19. J. P. Nic, S. Zhang, and D. E. Mikkola, Scripta Met., 24, 1099 (1990). https://doi.org/10.1016/0956-716X(90)90306-2
  20. H. Mabuchi, K. Hirukawa, H. Tsuda, and Y. Nakayama, Scripta Met., 24, 505 (1990). https://doi.org/10.1016/0956-716X(90)90191-I
  21. Y. Nakayama and H. Mabuchi, Intermetallics, 1, 41 (1993). https://doi.org/10.1016/0966-9795(93)90020-V
  22. M. Kogachi, S. Minamigawa, and K. Nakahigashi, Scripta Met., 27, 407 (1992). https://doi.org/10.1016/0956-716X(92)90202-P
  23. M. Kogachi and A. Kameyama, Scripta Met., 29, 1329 (1993). https://doi.org/10.1016/0956-716X(93)90133-D
  24. W E. Frazier and J. E. Benci, Scripta Met., 25, 2267 (1991). https://doi.org/10.1016/0956-716X(91)90013-Q
  25. H. Mabuchi, H. Tsuda, T. Matsui, and K. Morii, J. Japan. Inst. Met., 64, 1041 (2000). https://doi.org/10.2320/jinstmet1952.64.11_1041
  26. J. Ternacki and Y. W. Kim, Scripta Met., 22, 329 (1988). https://doi.org/10.1016/S0036-9748(88)80199-6
  27. M. B. Winnicka and R. A. Varin, Scripta Met., 23, 1199 (1989). https://doi.org/10.1016/0036-9748(89)90326-8
  28. R. A. Varin, L. Zbroniec, and Z. G. Wang, Intermetallics, 9, 195 (2001). https://doi.org/10.1016/S0966-9795(00)00105-9
  29. H. Miyagawa, T. Morikawa, T. Okazaki, H. Nakashima, and H. Yoshinaga, J. Japan. Inst. Met., 60, 367 (1996). https://doi.org/10.2320/jinstmet1952.60.4_367
  30. A. H. Cottrell, Dislocations and Plastic Flow in Crystals, p.136, Oxford (1965).
  31. A. H. Cottrell and M. A. Jaswon, Proc. Royal Society of London. Series A, Mathematical and Physical Sciences, A199, 104 (1949).
  32. A. H. Cottrell, Phil. Mag., 44, 829 (1953). https://doi.org/10.1080/14786440808520347
  33. P. G. McCormick, Acta Met., 19, 463 (1971). https://doi.org/10.1016/0001-6160(71)90170-2
  34. K. S. Kumar and J. D. Whittenberger, J. Mater. Res., 7, 1043 (1992). https://doi.org/10.1557/JMR.1992.1043
  35. R. Lerf and D. G. Morris, Acta Metall., 49, 1091 (1994).