DOI QR코드

DOI QR Code

In-Situ Analysis of Overpotentials in Direct Methanol Fuel Cell by Using Membrane Electrode Assembly Composed of Three Electrodes

삼전극으로 구성된 막전극접합체를 이용한 직접메탄올 연료전지의 실시간 과전압 분석

  • Jung, Namgee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Cho, Yoon-Hwan (School of Chemical and Biological Engineering, Seoul National University) ;
  • Cho, Yong-Hun (Department of Chemical Engineering, Kangwon National University) ;
  • Sung, Yung-Eun (School of Chemical and Biological Engineering, Seoul National University)
  • 정남기 (충남대학교 에너지과학기술대학원) ;
  • 조윤환 (서울대학교 화학생물공학부) ;
  • 조용훈 (강원대학교 화학공학과) ;
  • 성영은 (서울대학교 화학생물공학부)
  • Received : 2018.04.28
  • Accepted : 2018.05.23
  • Published : 2018.06.27

Abstract

In this study, a membrane electrode assembly(MEA) composed of three electrodes(anode, cathode, and reference electrode) is designed to investigate the effects of methanol concentration on the overpotentials of anode and cathode in direct methanol fuel cells(DMFCs). Using the three-electrode cell, in-situ analyses of the overpotentials are carried out during direct methanol fuel cell operation. It is demonstrated that the three-electrode cell can work effectively in transient state operating condition as well as in steady-state condition, and the anode and cathode exhibit different overpotential curves depending on the concentration of methanol used as fuel. Therefore, from the real-time separation of the anode and cathode overpotentials, it is possible to more clearly prove the methanol crossover effect, and it is expected that in-situ analysis using the three-electrode cell will provide an opportunity to obtain more diverse results in the area of fuel cell research.

Keywords

References

  1. S. K. Kamarudin, F. Achmad, and W. R. W. Daud, Int. J. Hydrogen Energy, 34, 6902 (2009). https://doi.org/10.1016/j.ijhydene.2009.06.013
  2. T. Zhao, C. Xu, R. Chen, and W. Yang, Prog. Energy Combust. Sci., 35, 275, (2009). https://doi.org/10.1016/j.pecs.2009.01.001
  3. J. N. Tiwari, R. N. Tiwari, G. Singh, and K. S. Kim, Nano Energy, 2, 553 (2013). https://doi.org/10.1016/j.nanoen.2013.06.009
  4. J. Xie, Q. Zhang, L. Gu, S. Xu, P. Wang, J. Liu, Y. Ding, Y. F. Yao, C. Nan, and M. Zhao, Nano Energy, 21, 247 (2016). https://doi.org/10.1016/j.nanoen.2016.01.013
  5. N. Jung, Y.-H. Cho, K.-H. Choi, J. W. Lim, Y.-H. Cho, M. Ahn, Y. S. Kang, and Y-E. Sung, Electrochem. Commun., 12, 754 (2010). https://doi.org/10.1016/j.elecom.2010.03.025
  6. S. C. Thomas, X. Ren, S. Gottesfeld, and P. Zelenay, Electrochim. Acta, 47, 3741 (2002). https://doi.org/10.1016/S0013-4686(02)00344-4
  7. A. Omosebi and R. S. Besser, J. Power Sources, 228, 151 (2013). https://doi.org/10.1016/j.jpowsour.2012.11.076
  8. D. Sebastian, A. Serov, I. Matanovic, K. Artyushkova, P. Atanassov, A. Arico, and V. Baglio, Nano Energy, 34, 195 (2017). https://doi.org/10.1016/j.nanoen.2017.02.039
  9. M. Ahmed and I. Dincer, Int. J. Energy Res., 35, 1213 (2011). https://doi.org/10.1002/er.1889
  10. S. Wu, J. Liu, D. Liang, H. Sun, Y. Ye, Z. Tian, and C. Liang, Nano Energy, 26, 699 (2016). https://doi.org/10.1016/j.nanoen.2016.06.038
  11. S. Lu, K. Eid, D. Ge, J. Guo, L. Wang, H. Wang, and H. Gu, Nanoscale, 9, 1033 (2017). https://doi.org/10.1039/C6NR08895C
  12. X.-L. Sui, C.-Z. Li, L. Zhao, Z.-B. Wang, D.-M. Gu, and G.-S. Huang, Int. J. Hydrogen Energy, 43, 5153 (2018). https://doi.org/10.1016/j.ijhydene.2018.01.137
  13. Z. Chen, Y.-C. He, J.-H. Chen, X.-Z. Fu, R. Sun, Y.-X. Chen, and C.-P. Wong, J. Phys. Chem. C, 122, 8976, (2018). https://doi.org/10.1021/acs.jpcc.8b01095
  14. J. Wang, G. Yin, G. Wang, Z. Wang, and Y. Gao, Electrochem. Commun., 10, 831 (2008). https://doi.org/10.1016/j.elecom.2008.03.009
  15. Y.-H. Cho, O.-H. Kim, D. Y. Chung, H. Choe, Y.-H. Cho, and Y.-E. Sung, Appl. Catal. B Environ., 154-155, 309 (2014). https://doi.org/10.1016/j.apcatb.2014.02.016
  16. J.-N. Zheng, L.-L. He, F.-Y. Chen, A.-J. Wang, M.-W. Xue, and J.-J. Feng, Electrochim. Acta, 137, 431 (2014). https://doi.org/10.1016/j.electacta.2014.06.052
  17. N. Jung, Y.-H. Cho, M. Ahn, J. W. Lim, Y. S. Kang, D. Y. Chung, J. Kim, Y.-H. Cho, and Y.-E. Sung, Int. J. Hydrogen Energy, 36, 15731 (2011). https://doi.org/10.1016/j.ijhydene.2011.09.054
  18. D. Jung, S. Cho, D. Peck, D. Shin, and J. Kim, J. Power Sources, 118, 205 (2003). https://doi.org/10.1016/S0378-7753(03)00095-8
  19. A. Casalegno, F. Bresciani, V. Di Noto, C. Casari, A. L. Bassi, E. Negro, R. Marchesi, and F. Di Fonzo, Int. J. Hydrogen Energy, 39, 2801 (2014). https://doi.org/10.1016/j.ijhydene.2013.09.028
  20. S. Yoon, G. Hwang, W. Cho, I.-H. Oh, S.-A. Hong, and H. Ha, J. Power Sources, 106, 215 (2002). https://doi.org/10.1016/S0378-7753(01)01048-5
  21. G. Li and P. G. Pickup, J. Power Sources, 161, 256 (2006). https://doi.org/10.1016/j.jpowsour.2006.03.071
  22. A. Kuver, I. Vogel, and W. Vielstich, J. Power Sources, 52, 77 (1994). https://doi.org/10.1016/0378-7753(94)01943-6
  23. P. Piela, T. E. Springer, J. Davey, and P. Zelenay, J. Phys. Chem. C, 111, 6512 (2007). https://doi.org/10.1021/jp067669y
  24. Z. Siroma, R. Kakitsubo, N. Fujiwara, T. Ioroi, S.-I. Yamazaki, and K. Yasuda, J. Power Sources, 156, 284 (2006). https://doi.org/10.1016/j.jpowsour.2005.05.045
  25. C. Xu, Y. L. He, T. S. Zhao, R. Chen, and Q. Ye, J. Electrochem. Soc., 153, A1358 (2006). https://doi.org/10.1149/1.2201467
  26. S. H. Seo and C. S. Lee, Energy Fuels, 22, 1212 (2008). https://doi.org/10.1021/ef700677y
  27. K. Scott, P. Argyropoulos, and K. Sundmacher, J. Electroanal. Chem., 477, 97 (1999). https://doi.org/10.1016/S0022-0728(99)00359-9