DOI QR코드

DOI QR Code

Mechanical Synthesis and Rapid Consolidation of Nanostructured W-Al2O3 Composite

  • Lee, BooRak (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Jeong, GeolChae (Department of Advanced Materials Engineering, Korea Polytechnic University) ;
  • Park, GeunO (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Hydrogen Fuel Cell, Chonbuk National University)
  • Received : 2018.05.10
  • Accepted : 2018.05.28
  • Published : 2018.06.27

Abstract

Recently, the properties of nanostructured materials as advanced engineering materials have received great attention. These properties include fracture toughness and a high degree of hardness. To hinder grain growth during sintering, it is necessary to fabricate nanostructured materials. In this respect, a high-frequency induction-heated sintering method has been presented as an effective technique for making nanostructured materials at a lower temperature in a very short heating period. Nanopowders of W and $Al_2O_3$ are synthesized from $WO_3$ and Al powders during high-energy ball milling. Highly dense nanostructured $W-Al_2O_3$ composites are made within three minutes by high-frequency induction-heated sintering method and materials are evaluated in terms of hardness, fracture toughness, and microstructure. The hardness and fracture toughness of the composite are $1364kg/mm^2$ and $7.1MPa{\cdot}m^{1/2}$, respectively. Fracture toughness of nanostructured $W-Al_2O_3$ is higher than that of monolithic $Al_2O_3$. The hardness of this composite is higher than that of monolithic W.

Keywords

References

  1. W. F. Smith, Structure and Properties of Engineering Alloys, 2nd ed., p.580, McGraw Hill, New York, U.S.A. (1993).
  2. L. Uray, Int. J. Refract. Met. Hard Mater., 20, 311 (2002). https://doi.org/10.1016/S0263-4368(02)00031-8
  3. L. Uray, Int. J. Refract. Met. Hard Mater., 20, 319 (2002). https://doi.org/10.1016/S0263-4368(02)00032-X
  4. R. Malewar, K. S. Kumar, B. S. Murty, B. Sarma, and S. K. Pabi, J. Mater. Res., 22, 1200 (2007). https://doi.org/10.1557/jmr.2007.0166
  5. M. Sherif El-Eskandarany, J. Alloys Compd., 305, 225 (2000). https://doi.org/10.1016/S0925-8388(00)00692-7
  6. I.-J. Shon, Int. J. Refract. Met. Hard Mater., 64, 242 (2017). https://doi.org/10.1016/j.ijrmhm.2016.07.024
  7. I.-J. Shon and S.-J. Lee, Int. J. Refract. Met. Hard Mater., 65, 69 (2017). https://doi.org/10.1016/j.ijrmhm.2016.10.009
  8. I.-J. Shon, Korean J. Met. Mater., 54, 826 (2016). https://doi.org/10.3365/KJMM.2016.54.11.826
  9. I.-J. Shon, Int. J. Refract. Met. Hard Mater., 72, 257 (2018). https://doi.org/10.1016/j.ijrmhm.2017.12.031
  10. E. Lassner and W-D. Schubert, Tungsten-properties, chemistry, technology of the element, alloys, and chemical compounds, Kluwer Academic/Plenum Publishers, New York, 1999, pp. 255.
  11. I.-J. Shon, H. J. Kwon, and H.-S. Oh, Electron. Mater. Lett., 10, 337 (2014). https://doi.org/10.1007/s13391-013-3193-0
  12. C. Suryanarayana and M. Grant Norton, X-ray diffraction: a practical approach, Plenum Press, New York, 1998.
  13. Z. Shen, M. Johnsson, Z. Zhao, and M. Nygren, J. Am. Ceram. Soc., 85, 1921 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00381.x
  14. J. E. Garay, U. Anselmi-Tamburini, Z. A. Munir, S. C. Glade, and P. Asoka-Kumar, Appl. Phys. Lett., 85, 573 (2004). https://doi.org/10.1063/1.1774268
  15. I.-J. Shon, Ceram. Int., 42, 15113 (2016). https://doi.org/10.1016/j.ceramint.2016.06.129
  16. I.-J. Shon, Ceram. Int., 42, 13314 (2016). https://doi.org/10.1016/j.ceramint.2016.05.060
  17. W. B. Kim, K.-M. Roh, J.-W. Lim, H.-S. Oh, and I.-J. Shon, J. Alloys Compd., 574, 260 (2013). https://doi.org/10.1016/j.jallcom.2013.05.060
  18. K. Niihara, R. Morena, and D. P. H. Hasselman, Mater. Sci. Lett., 1, 13 (1982). https://doi.org/10.1007/BF00724706
  19. M. N. Rahaman, A. Yao, B. S. Bal, J. P. Garino, and M. D. Ries, J. Am. Ceram. Soc., 90, 1965 (2007). https://doi.org/10.1111/j.1551-2916.2007.01725.x