DOI QR코드

DOI QR Code

Analysis of Attrition Rate of Y2O3 Stabilized Zirconia Beads with Different Microstructure and Mechanical Properties

고에너지 분쇄 매체 지르코니아 Beads의 미세구조 및 기계적 특성에 따른 마모율 분석

  • Kim, Jung-Hwan (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Yoon, Sae-Jung (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Hahn, Byung-Dong (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Ahn, Cheol-Woo (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Yoon, Woon-Ha (Functional Ceramics Department, Korea Institute of Materials Science) ;
  • Choi, Jong-Jin (Functional Ceramics Department, Korea Institute of Materials Science)
  • 김정환 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 윤세중 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 한병동 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 안철우 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 윤운하 (한국기계연구원 부설 재료연구소 기능세라믹연구실) ;
  • 최종진 (한국기계연구원 부설 재료연구소 기능세라믹연구실)
  • Received : 2018.04.19
  • Accepted : 2018.05.31
  • Published : 2018.06.27

Abstract

Particle size reduction is an important step in many technological operations. The process itself is defined as the mechanical breakdown of solids into smaller particles to increase the surface area and induce defects in solids, which are needed for subsequent operations such as chemical reactions. To fabricate nano-sized particles, several tens to hundreds of micron size ceramic beads, formed through high energy milling process, are required. To minimize the contamination effects during high-energy milling, the mechanical properties of zirconia beads are very important. Generally, the mechanical properties of $Y_2O_3$ stabilized tetragonal zirconia beads are closely related to the mechanism of phase change from tetragonal to monoclinic phase via external mechanical forces. Therefore, $Y_2O_3$ distribution in the sintered zirconia beads must also be closely related with the mechanical properties of the beads. In this work, commercially available $100{\mu}m-size$ beads are analyzed from the point of view of microstructure, composition homogeneity (especially for $Y_2O_3$), mechanical properties, and attrition rate.

Keywords

References

  1. M. S. Norhasri, M. S. Hammidah, and A. Mohd Fadzil, Constr. Build. Mater., 133, 91 (2017). https://doi.org/10.1016/j.conbuildmat.2016.12.005
  2. L. Filipponi and D. Surherland, NANOTECHNOLOGIES: Principles, Applications, Implications and Hands-on Activities (2013).
  3. T. P. Yadav, R. M. Yadav, and D. P. Singh, Nanosci. Nanotech., 2, 22 (2012).
  4. D. L. Zhang, Prog. Mater. Sci., 49, 537 (2004). https://doi.org/10.1016/S0079-6425(03)00034-3
  5. A. Kwade, Powder Technol., 105, 14 (1999). https://doi.org/10.1016/S0032-5910(99)00113-8
  6. K. Shinohara, B. Golman, T. Uchiyama, and M. Otani, Powder Technol., 103, 292 (1999). https://doi.org/10.1016/S0032-5910(99)00042-X
  7. M. Becker and J. Schwedes, Powder Technol., 105, 374 (1999). https://doi.org/10.1016/S0032-5910(99)00161-8
  8. N. Bamba, Y.-H. Choa, T. Sekino, and K. Niihara, J. Eur. Ceram. Soc., 23, 773 (2003). https://doi.org/10.1016/S0955-2219(02)00168-1
  9. M. Trunec, Ceramics- Silikáty, 52, 165 (2008).
  10. R. H. J. Hannink, P. M. Kelly, and B. C. Muddle, J. Am. Ceram. Soc., 83, 461 (2000).
  11. F. F. Lange, J. Mater. Sci., 17, 225 (1982). https://doi.org/10.1007/BF00809057
  12. I. Nettleship and R. Stevens, Int. J. High Tech. Ceram., 3, 1 (1987). https://doi.org/10.1016/0267-3762(87)90060-9
  13. O. Vasylkiv, Y. Sakka, and V. V. Skorokhod, Mater. Trans., 44, 2235 (2003). https://doi.org/10.2320/matertrans.44.2235
  14. S. Stemmer, J. Vleugels, and O. V. D. Biest, J. Eur. Ceram. Soc., 18, 1565 (1998). https://doi.org/10.1016/S0955-2219(98)00078-8
  15. K. Matsui, H. Yoshida, and Y. Ikuhara, Acta Mater., 56, 1315 (2008). https://doi.org/10.1016/j.actamat.2007.11.026