DOI QR코드

DOI QR Code

Effect of Mo and Mn Addition on the Oxidation Behavior of Binary Ti-Al Alloys

  • Han, Chang-Suk (Department of ICT Automotive Engineering, Hoseo University) ;
  • Jin, Sung-Yooun (Department of ICT Automotive Engineering, Hoseo University) ;
  • Bang, Hyo-In (Department of ICT Automotive Engineering, Hoseo University)
  • Received : 2018.05.08
  • Accepted : 2018.06.03
  • Published : 2018.06.27

Abstract

Binary Ti-Al alloys below 51.0 mass%Al content exhibit a breakaway, transferring from parabolic to linear rate law. The second $Al_2O_3$ layer might have some protectiveness before breakaway. Ti-63.1 mass%Al oxidized at 1173 K under parabolic law. Breakaway oxidation is observed in every alloy, except for Ti-63.1 mass%Al. After breakaway, oxidation rates of the binary TiAl alloys below 34.5 mass%Al obey almost linear kinetics. The corrosion rate of Ti-63.1 mass%Al appears to be almost parabolic. As content greater than 63.0 mass% is found to be necessary to form a protective alumina film. Addition of Mo improves the oxidation resistance dramatically. No breakaway is observed at 1123 K, and breakaway is delayed by Mo addition at 1173 K. At 1123 K, no breakaway, but a parabolic increase in mass gain, are observed in the Mo-added TiAl alloys. The binary Ti-34.5 mass%Al exhibits a transfer from parabolic to linear kinetics. At 1173 K, the binary alloys show vary fast linear oxidation and even the Mo-added alloys exhibit breakaway oxidation. The 2.0 mass%Mo-added TiAl exhibits a slope between linear and parabolic. At values of 4.0 and 6.0 mass% added TiAl alloys, slightly larger rates are observed than those for the parabolic rate law, even after breakaway. On those alloys, the second $Al_2O_3$ layer appears to be persistently continuous. Oxidation resistance is considerably degraded by the addition of Mn. Mn appears to have the effect of breaking the continuity of the second $Al_2O_3$ layer.

Keywords

References

  1. C. S. Han, Asian J. Chem., 28, 374 (2016). https://doi.org/10.14233/ajchem.2016.19361
  2. C. S. Han and S. Y. Lim, Korean J. Mater. Res. 26, 13 (2016).
  3. C. S. Han and S. W. Kim, Korean J. Mater. Res. 27, 367 (2017). https://doi.org/10.3740/MRSK.2017.27.7.367
  4. Y. J. Xi, Y. J. Liu, Z. X. Wang, and J. B. Liu, Anti-Corros. Methods Mater., 59, 178 (2012). https://doi.org/10.1108/00035591211242005
  5. S. Zeng, A. Zhao, and H. Jiang, Appl. Surf. Sci., 332, 362 (2015). https://doi.org/10.1016/j.apsusc.2015.01.192
  6. Z. Tang, F. Wang, and W. Wu, Mater. Sci. Eng., A, 276, 70 (2000). https://doi.org/10.1016/S0921-5093(99)00513-4
  7. A. Donchev, M. Galetz, and M. Schutze, Mater. Sci. Forum, 783/786, 1117 (2014). https://doi.org/10.4028/www.scientific.net/MSF.783-786.1117
  8. C. Zhou, F. P. Zeng, B. Liu, Y. Liu, K. Zhao, J. Lu, C. Qiu, J. Li, and Y. He, Mater. Trans., 57, 461 (2016). https://doi.org/10.2320/matertrans.M2015355
  9. Y. W. Kim and S. L. Kim, Intermetallics, 53, 92 (2014). https://doi.org/10.1016/j.intermet.2014.04.006
  10. X. W. Zhang, C. L. Zhu, H. X. Li, and J. Zhang, J. Aero. Mater., 34, 11 (2014).
  11. J. Wang, L. Kong, J. Wu, T. Li, and T. Xiong, Appl. Surf. Sci., 356, 827 (2015). https://doi.org/10.1016/j.apsusc.2015.08.204
  12. J. P. Lin, L. L. Zhao, G. Y. Li, L. Q. Zhang, X. P. Song, F. Ye and, G. L. Chen, Intermetallics, 19, 131 (2011). https://doi.org/10.1016/j.intermet.2010.08.029
  13. T. Yao, Y. Liu, B. Liu, M. Song, K. Zhao, W. Zhang, and Y. He, Surf. Coat. Technol., 277, 210 (2015). https://doi.org/10.1016/j.surfcoat.2015.07.058
  14. X. Y. Li, S. Taniguchi, Y. C. Zhu, K. Fujita, N. Iwamoto, Y. Matsunaga, and K. Nakagawa, Nucl. Instrum. Methods Phys. Res., Sect. B, 187, 207 (2002). https://doi.org/10.1016/S0168-583X(01)00934-X
  15. M. Yoshihara and K. Miura, Intermetallics, 3, 357 (1995). https://doi.org/10.1016/0966-9795(95)94254-C
  16. R. Pflumm, A. Donchev, S. Mayer, H. Clemens, and M. Schutze, Intermetallics, 53, 45 (2014). https://doi.org/10.1016/j.intermet.2014.04.010
  17. X. Liu, K. You, Z. Wang, M. Zhang, and Z. He, Vacuum, 89, 209 (2013). https://doi.org/10.1016/j.vacuum.2012.05.015
  18. Y. Wu and S. K. Hwang, Mater. Lett., 58, 2067 (2004). https://doi.org/10.1016/j.matlet.2003.12.036
  19. Y. Wu, S. K. Hwang, and Y. Umakoshi, Mater. Trans., 45, 1272 (2004). https://doi.org/10.2320/matertrans.45.1272
  20. Y. Wu, S. K. Hwang, K. Hagihara, and Y. Umakoshi, Intermetallics, 14, 9 (2006). https://doi.org/10.1016/j.intermet.2005.02.014