
Introduction

Monitoring the growth status of crops is one of the 

methods for archiving productivity improvement and 

stable cultivation. Traditionally, it is being monitored 

from seeding to harvest based on the farmer’s experience. 

In other words, it is meaning that it is difficult and risk to 

approach cultivating other crops without the experience. 

Therefore, the growth status of the crops needs to be 

assessed by the value of its canopy sensed by an imaging 

sensor to facilitate an objective judgment without requiring 

experience on various crop cultivations. Various reflectances 

of the canopy can be obtained by multispectral or hyper-

spectral imaging sensors (Zarco-Tejada et al., 2013). The 

reflectances of the crop’s canopy are different between 

the near-infrared (NIR) band and visible bands. The 

reflectance in the NIR band is high as a result of the 

spongy parenchyma effect inside a healthy canopy, 

thereby aggravating the reflectance of many leaf layers. 
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Purpose: A narrowband hyperspectral imaging sensor of high-dimensional spectral bands is advantageous for identifying 

the reflectance by selecting the significant spectral bands for predicting crop yield over the broadband multispectral 

imaging sensor for each wavelength range of the crop canopy. The images acquired by each imaging sensor were used to 

develop the models for predicting the Chinese cabbage yield. Methods: The models for predicting the Chinese cabbage 

(Brassica campestris L.) yield, with multispectral images based on unmanned aerial vehicle (UAV), were developed by simple 

linear regression (SLR) using vegetation indices, and forward stepwise multiple linear regression (MLR) using four spectral 

bands. The model with hyperspectral images based on the ground were developed using forward stepwise MLR from the 

significant spectral bands selected by dimension reduction methods based on a partial least squares regression (PLSR) 

model of high precision and accuracy. Results: The SLR model by the multispectral image cannot predict the yield well 

because of its low sensitivity in high fresh weight. Despite improved sensitivity in high fresh weight of the MLR model, its 

precision and accuracy was unsuitable for predicting the yield as its R2 is 0.697, root-mean-square error (RMSE) is 1170 

g/plant, relative error (RE) is 67.1%. When selecting the significant spectral bands for predicting the yield using 

hyperspectral images, the MLR model using four spectral bands show high precision and accuracy, with 0.891 for R2, 616 

g/plant for the RMSE, and 35.3% for the RE. Conclusions: Little difference was observed in the precision and accuracy of the 

PLSR model of 0.896 for R2, 576.7 g/plant for the RMSE, and 33.1% for the RE, compared with the MLR model. If the 

multispectral imaging sensor composed of the significant spectral bands is produced, the crop yield of a wide area can be 

predicted using a UAV.
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The visible bands are related to the radiation absorbed by 

the crop pigments inside the palisade parenchyma and 

vary with the wavelength of the incident radiation. The 

contrast between bands is used to calculate various 

vegetation indices (Kang et al., 2017). The indices are 

compared with the crop traits, including the leaf area 

index (LAI), leaf chlorophyll, and yield prediction using 

simple linear regression analysis and are important 

indicators to monitor the crops (Liu et al., 2017). 

Particularly, the normalized difference vegetation index 

(NDVI) and simple ratio (SR) are the most widely used. 

However, the NDVI easily saturates in a healthy vegetation 

canopy. The saturation inhibits the reflectance sensitivity 

in the red band owing to the high absorption coefficient of 

chlorophyll in the canopy (Nguy-Robertson et al., 2012). 

Further, the saturation is attributed to the NDVI formula 

by the high NIR band reflected by the canopy. It is prone 

to scattering on the vegetation canopy of healthy growth. 

The SRs calculated by the red edge and visible bands 

might be alternatives to overcome the limitation (Kang et 

al., 2017). The SR was used to predict a large-area rice 

yield with the SR reflected canopy at the booting stage 

using multispectral bands of satellite imagery (Wang et 

al., 2010). Additionally, the rice green LAI (gLAI) of crop 

canopies was retrieved from the spectral indices and the 

SR calculated by the bands of hyperspectral imagery from 

satellites (Haboudane et al., 2004). Further, various 

vegetation indices of crop canopies were evaluated to 

retrieve the gLAI of the crops (Viña et al., 2011).

Hence, remote sensing technology carrying various 

imaging sensors has great potential because it enables 

wide-area and real-time acquisition for sensing crop 

conditions (Ryu et al., 2011). The technology contains 

some information such as remote sensing platform, global 

positioning system (GPS), and geographic information 

system (GIS) for investigating spatial variability (Huang 

et al., 2016). Traditional remote sensing platforms such 

as artificial satellites and aircraft are not suitable for 

proximal remote sensing for precisely monitoring the 

growth status because of their low spatial and temporal 

resolutions (Mulla, 2013). Recently, small unmanned 

aerial vehicles (UAVs) have been reported to fly at low 

altitudes, which have been achieved by the powerful 

platform for precisely monitoring the growth status of 

the detected individual crop as high spatial resolution. 

Further, it is beneficial in terms of unconstrained 

scheduling, low price, low-altitude flying, and safer than a 

piloted aircraft (Kang et al., 2016). The multispectral 

imaging sensors, commonly equipped with a UAV, cannot 

easily predict the physiological attributes of different 

crops. Therefore, it is essential to select key spectral 

bands using high-dimensional data in crop canopies 

extracted by the hyperspectral images for optimally 

predicting the physiological attributes of different crops. 

The high-dimensional data have been handled by some 

spectral band selection methods because of the high 

correlation inherent in adjacent spectral bands. Most 

spectral band selection methods were conducted using 

partial least squares regression (PLSR) and multiple 

linear regression (MLR) with stepwise discriminant 

analysis (Song et al., 2011). PLSR is a powerful tool to 

predict physiological attributes; however, it has some 

drawbacks because of the threshold selection of variables 

to be included in PLSR associated with the process of 

choosing the latent factors (Martinez et al., 2017). 

Nevertheless, the weight value and variable importance 

for projection (VIP) can be used to determine the 

important variables (Stellacci et al., 2016). MLR with 

stepwise discriminant analysis provides the best linear 

spectral combinations to assess physiological attributes. 

The methods can be extremely useful to provide data 

interpretation or multispectral imaging sensor development. 

The growth models developed by such linear regression 

analysis methods have been used to simulate the crop 

growth status. The models are useful in predicting crop 

yields before harvest to allow decision making in crop 

yield management (Jin et al., 2018).

In recent studies, the unmanned aerial system had 

been utilized to assess the nutritional status in maize 

(Gabriel et al., 2017) and monitor wheat growth 

(Mengmeng et al., 2017) from multispectral imagery. 

Further, grain yield had been predicted using the system 

to monitor the dry matter yield of triticale (Noack, 2016), 

and the biomass and grain yield of rice by the NDVI 

(Swain et al., 2010; Teoh et al., 2016; Zhou et al., 2017). 

The chlorophyll in oat was predicted using relevance 

vector machines coupled with cross-validation and 

backward elimination from thermal and multispectral 

imagery (Elarab et al., 2015). Multivariate analyses such 

as partial least squares regression and least squares- 

support vector machine with spectral pre- processing 

using multiplicative scatter correction and standard 

normal variable was performed to predict carbon and 

nitrogen contents in citrus canopy from hyperspectral 
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imagery (Xuefeng et al., 2016).

The objectives of this study are to develop the models 

with spectral bands selection for predicting the yield of 

autumn Chinese cabbage (Brassica campestris L.), with 

some spectral bands in remotely sensed canopies by 

multispectral imaging sensor equipped with a fixed-wing 

UAV, and canopy sensing by hyperspectral imaging 

sensor based on the ground, depending on the vegetation 

stages of the Chinese cabbage planted on the different 

dates during the growing seasons in 2015.

Materials and Methods

Field experiment

The study was conducted at Heaje-myeon (35° 

4`11.28`` N, 126° 18`21.25`` E, approximately 63 m above 

sea levels) in 2015. The plot at Haeje-myeon is a silty clay 

loam of alkaline and low stone content. The average 

annual temperature and rainfall at the area were 13.4°C 

and 948.6 mm, respectively, in 2015. The plots comprised 

a design with the different planting dates such as normal 

plating (7th Sept.), one-week-delay planting (19th Sept.), 

and two-week-delay planting (25th Sept.) with three 

replications. The variety used for the experiment was 

Chinese cabbage (Whistle, Sakata Korea Co., Ltd., Rep. Korea) 

that is suitable to cultivate in the autumn.

Image acquisition

A multispectral image sensor, Multispec-4c (Sensefly 

Ltd., Sheseaux-Lausanne, Switzerland), shown in Figure 

1 (a), equipped with an upward-facing sunshine sensor to 

correct the reflectance data in each band between the 

multitemporal images irrespective of light conditions, 

was mounted on the fixed-wing UAV to collect the images 

of the crop canopy. The camera and sunshine sensor of 

the imaging sensor was configured to measure the 

reflectance value of the central wavelength and full width 

at half maximum (FWHM) at green (550 ±  40 nm), red 

(660 ±  40 nm), red edge (735 ±  10 nm), and NIR (790 ±  40 

nm) to meet the requirements of the monitoring 

application. The full scene size of each band image was 

provided as a 1.2-megapixel image in the raw format with 

a spatial resolution of 6 cm/pixel at approximately 50 m. 

Autonomous flights were conducted with an interval of 

approximately one week on 7th Oct., 21st Oct., and 4th Nov. 

in 2015 from the early growth stage to harvest. The 

images were acquired during midday to reduce the 

influence of incident light angle and dew on the leaf 

surface owing to the clear sky (Onoyama et al., 2013).

As shown in Figure 1 (b), the platform consisted of a 

0.96-m wingspan fixed-wing UAV capable of a 50-min 

endurance at maximum with 0.69 kg take-off weight and 

a ground speed of approximately 10 m/s (eBee, Sensefly, 

Switzerland). The platform was operated by an autopilot 

associated with autonomous flight (eBee, senseFly, Cheseaux- 

Lausanne, Switzerland) based on a differential GPS (DGPS), 

three- axis accelerometer, gyros, and a three-axis magnetometer. 

The artificial intelligence inside the autopilot continuously 

analyzes the onboard inertial measurement unit and GPS 

data to control and optimize every aspect of the flight. 

The flight plan software (eMotion, senseFly, Cheseaux- 

Lausanne, Switzerland) on the ground and the UAV 

were connected through a radio link where the position, 

altitude, and status data were transmitted at a 2.3 GHz 

frequency within approximately a 3 km range.

(a) (b)

Figure 1. Multispectral image sensor (Multispec-4c) (a), Unmanned aerial vehicle (eBee) (b)
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A hyperspectral image sensor, i.e., the VNIR spectral 

imaging sensor (PS, Spectral Imaging Ltd., Oulu, Finland) 

as shown in Figure 2, was operated to collect the images of 

the Chinese cabbage canopy on the ground. The images 

of the sensor are acquired by the scanner method based 

on the push broom. The spectral resolution of the images 

is 2.8 nm and comprises 519 spectral bands in the 

wavelength range of 400–1000 nm. The hyperspectral 

images were acquired at the same date as the multispectral 

images and at ~2 m height with an 18% reference board 

for light correction.

Image processing

The plurality of images per flight was acquired based 

on the flight plan software (eMotion, Sensefly Ltd., Sheseaux- 

Lausanne, Switzerland) using the information from the 

gyro and GPS. The mosaicking images considering each 

band was obtained using a UAV mapping software (Pix4D 

mapper pro, Pix4D, Lausanne, Switzerland), and tagged 

image file format of 8 bit/pixel images were produced. 

The coordinates of some targets were measured as the 

ground control points (GCPs) maintained throughout the 

vegetation stages with an RTK-GPS (V30 SNSS RTK 

System, Hi-Target Surveying Instrument Co. Ltd., China) to 

georeferenced images through a quadratic equation with 

the UAV mapping software using GCPs.

The single NIR band or SR calculated by the NIR and 

visible bands were used to separate the vegetation area of 

the canopies based on Ortho’s threshold method using an 

image processing software (ENVI 4.7, Harris Geospatial 

Solutions Inc., Broomfield, CO. USA). Each sampling area 

was fixed as the region of interest as shown in Figure 3.

Modeling methods

Several vegetation indices (VIs) were chosen for the 

model of fresh weight as shown in Table 1. SLR and MLR 

Figure 2. Hyperspectral image sensor (VNIR PS)

(a) (b)

Figure 3. Extraction of canopy areas in hyperspectral image (a) and multispectral image (b)

Table 1. Formula of vegetation indices

Vegetation indices Formula Reference

NDVI DNnir - DNred/ DNnir + DNred Rouse et al., 1974

GreenNDVI DNnir - DNgreen/ DNnir + DNgreen Gitelson et al., 1996

Red edge NDVI DNred edge – DNred/ DNred edge + DNred Sharma et al., 2015

Red edge GreenNDVI DNred edge – DNgreen/ DNred edge + DNgreen Kang et al., 2017

Simple ratio DNnir or red edge/ DNvisible ratio Jordan., 1969
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were computed to analyze the relationship between the 

fresh weight of Chinese cabbage and the VIs using the 

spectral bands of the canopies.

To reduce the high-dimensional spectral bands of canopies 

sensed in the hyperspectral images, the weight value and 

VIP based on PLSR were measured by the R project (version 

3.2.3, R Foundation for Statistical Computing, Vienna, 

Austria). The forward stepwise multiple linear modeling 

for reducing the number of spectral bands was computed 

using SPSS (ver. 24, IBM SPSS Statistics, IBM Corp., 

Armonk, NY, USA). The coefficient of determination (R2) 

and the root-mean-square error (RMSE) were used to 

evaluate the performance of the simple and MLR models.

Results and Discussion 

Modeling of fresh weight for Chinese 

cabbage by multispectral image

A total of 59 samples out of 60 samples were used 

because the location of one sample in the image was not 

identified. The mean value of fresh weight for Chinese 

cabbage was 1743 g/plant and the standard deviation 

was 1784 g/plant for all samples. The SLR models of fresh 

weight for Chinese cabbage using VIs with all data of all 

growth stages are presented in Table 2. The R2 values of 

all models are less than 0.397, their RMSE values exceed 

1410 g/plant, and their RE values exceed 80%. This 

means that the fresh weight of Chinese cabbage is difficult 

to predict using VIs because of the low accuracy and 

precision of the VI models as shown in Figure 4 (a). 

The forward stepwise MLR models of fresh weight for 

Chinese cabbage using multispectral bands with all 

growth stage data are presented in Table 3. The precision 

and accuracy of the MLR models are increased compared 

with those of the SLR models. The most suitable MLR 

model is established with four bands and its precision 

and accuracy are 0.607, 1170 g/plant and 67.1%, 

respectively. Despite the sensitivity improvement at the 

high fresh weight as shown in Figure 4 (b), the fresh 

(a) (b)

Figure 4. Simple linear regression graph for predicting fresh weight using red edge GNDVI (a), MLR graph for predicting fresh weight using 
four spectral bands (b)

Table 2. Simple linear regression model of fresh weight for Chinese cabbage using vegetation indices

Vegetation indices Equation R2 (n=59) RMSE [g/plant] RE [%]

NDVI 14530x-11069 0.214 1609 92.3

GNDVI 15025x-10223 0.181 1643 94.3

Red edge NDVI 12439x-8477.4 0.298 1521 87.3

Red edge GNDVI 17930x-10790 0.397 1410 80.9

NIR/Red 67.09x+400.7 0.114 1708 98.0

NIR/Green 256.6x-692.7 0.138 1685 96.7

Red edge/Red 140.9x-22.46 0.196 1627 93.3

Red edge/Green 789.5x-2937 0.369 1442 82.7

x, Values in each vegetation indices
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weight of Chinese cabbage was difficult to predict 

accurately because the RMSE exceeded 1 kg/plant and 

the relative error exceeded 65%. 

Modeling of fresh weight for Chinese 

cabbage by hyperspectral images

The PLSR model of fresh weight for Chinese cabbage 

using hyperspectral bands with all growth stage data is 

presented in Table 4. The latent variable was determined 

as six by predicting the residual error sum of squares 

statistics in the PLSR (Li et al., 2002). The fresh weight of 

Chinese cabbage was predicted as 0.896 for R2, 576.7 

g/plant for the RMSE, and 33.1% for the RE. The model 

precision increased by approximately 30% and the 

accuracy also improved by more than 50% compared 

with those of the forward stepwise MLR model with four 

bands. The precision and accuracy of the validation 

model based on leave one out was 0.848 for R2, 696.3 

g/plant for the RMSE, and 40% for the RE. The variation 

in reflectance depending on all the wavelengths and the 

PLSR model of fresh weight for Chinese cabbage are 

presented in Figure 5. The fresh weight of Chinese 

cabbage can be predicted using the PLSR model. However, 

it requires the information of full spectral bands for a high 

(a) (b)

Figure 5. Reflectance value of canopies in hyperspectral images (a), partial least squares regression model graph for predicting fresh weight 
using 519 spectral bands (b)

Table 3. MLR model of fresh weight for Chinese cabbage by forward stepwise method

Selected spectral bands Equation R2 (n=59) RMSE [g/plant] RE [%]

Red, Red edge 13309x1-57065x2-1125.1 0.457 1349 77.4

Red, Red edge, Green -117810x1+22421x2+45377x3-520.88 0.547 1244 71.4

Red, Red edge, Green, NIR -5866.1x1-131165x2+31342x3+56489x4+93.673 0.607 1170 67.1

Reflectance values in x1, Red; x2, Red edge; x3, Green; x4, NIR

Table 4. Partial least squares regression model of fresh weight for Chinese cabbage

Fresh weight (n=59)

LV 6

Calibration

R2 0.896

RMSE [g/plant] 576.7

RE [%] 33.1

Validation

R2 0.848

RMSE [g/plant] 696.3

RE [%] 40.0
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performance. Therefore, the significant spectral bands 

were selected by the stepwise method to reduce the 

number of spectral bands in the model while maintaining 

the model performance. 

The spectral bands were reduced by selecting the peak 

points between each maximum and minimum weight 

value of 10 points within each spectral bandwidth (blue, 

green, red, red edge, NIR) and the bands with the value of 

VIP of more than 1.2 remained after the dimension 

reduction, as shown in Figure 6. Based on this method, 98 

bands out of 519 bands were selected as the significant 

spectral bands.

Finally, a forward stepwise MLR using 98 bands was 

applied to select the spectral band for predicting the fresh 

weight of Chinese cabbage. The maximum number of 

bands for forward stepwise MLR was limited to five 

bands for commercializing the spectral imaging sensor. 

The precision and accuracy of the models using the 

selected spectral bands are shown in Table 5. The five 

selected spectral bands are in order of green (559.6 nm), 

red edge (768.8 nm), green (590.9 nm), red edge (723.8 

nm), and red edge (721.3 nm), respectively. Although the 

precision and accuracy of the model with five bands was 

the best with 0.898 for R2, 602 g/plant for the RMSE, and 

34.5% for the RE, the fourth and fifth selected bands were 

extremely close to each other, i.e., 723.8 nm and 721.3 

nm, respectively. Therefore, the suitable number of 

bands to predict the fresh weight of Chinese cabbage and 

to commercialize the spectral imaging sensor were four 

bands: green (559.6 nm), red edge (768.8 nm), green 

(590.9 nm), and red edge (723.8 nm). The precision and 

accuracy of the model using four bands were almost 

similar to those of the model using five bands, with 0.891 

for R2, 616 g/plant for the RMSE, and 35.3% for the RE. 

The model with four spectral bands is considered to be 

better than the model with five spectral bands because it 

is advantageous in terms of the price reduction of the 

multispectral imaging sensor, and improved the 

processing time by the low-dimensional spectral bands. 

Moreover, the performance of the four-band model was 

similar to the PLSR model, with all of the 519 bands 

compared in terms of precision and accuracy, as shown in 

table 4 and table 5.

Figure 7 (a), developed using two spectral bands, 

shows low sensitivity in the high fresh weight along with 

the results of the models using multispectral images. 

(a) (b)

Figure 6. Reduction of high-dimensional spectral bands by weight values and variance importance in projection based on PLSR model

Table 5. Forward stepwise MLR model for predicting the fresh weight of Chinese cabbage using 98 selected bands of 519 bands

Selected Spectral bands [nm] Equation R2 RMSE [g/plant] RE [%]

559.6, 768.8 1733.2x1-6078.0x2+1121.2 0.741 931.8 53.5

559.6, 768.8, 590.9 33179x1+2139.7x2-29071x3-1579.7 0.856 700.8 40.2

559.6, 768.8, 590.9, 723.8 -9483.5x1+34542x2+5077.3x3-15803x14-2691.1 0.891 616.0 35.3

559.6, 768.8, 590.9, 723.8, 721.3 3151.3x1-13809x2+39744x3+5932.3x4-18273x5-3271.4 0.898 602.0 34.5

Reflectance values in x1, 559.6 nm; x2, 768.8 nm; x3, 590.9 nm; x4, 723.8 nm; x5, 721.3 nm
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Figure 7 (b), developed using four spectral bands, shows 

high sensitivity in the high fresh weight along with the 

PLSR model using all spectral bands.

Conclusions

In this research, SLR and forward stepwise MLR 

models with various VIs based on the reflectance of 

multispectral bands, and PLSR models and forward 

stepwise MLR models with the selected spectral bands 

based on the reflectance of hyperspectral bands were 

established and compared to predict the fresh weight of 

Chinese cabbage. The performance of selected spectral 

bands with forward stepwise MLR models was similar to 

that of PLSR models despite the difference in the number 

of selected bands. The suitable number of bands for 

commercializing the spectral imaging sensor were four 

bands: green (559.6 nm), red edge (768.8 nm), green 

(590.9 nm), and red edge (723.8 nm) because the fourth 

and fifth selected bands were extremely close to each 

other. The performance of the selected four bands with 

the forward stepwise MLR model were 0.891 for R2, 616 

g/plant for the RMSE, and 35.3% for the RE; further, no 

significant difference was shown when compared with 

the PLSR model with 0.898 for R2, 602 g/plant for the 

RMSE, and 34.5% for the RE. 

These results show better model performances and 

significant spectral bands in predicting the growth using 

high-dimensional data and stepwise MLR over the previous 

model performance developed using low-dimensional 

data and SLR of Kang et al. (2017). The MLR model is 

necessary to verify the integration possibility of the 

annual models developed in other years using the growth 

environment information to be adapted to various 

environmental conditions (Ryu et al., 2011).

Many issues that need to be improved to produce a 

commercial imaging sensor. It might be necessary to 

select the suitable bandpass filters with FWHM to 

commercialize the multispectral imaging sensor because 

the four selected bands with forward stepwise MLR 

model was established using the 2.8 nm bandwidth. 

Moreover, the precision and accuracy of the model 

modified with commercialized bandpass filter with 

FWHM were also compared with those of the four 

selected bands with forward stepwise MLR model. It is 

also necessary to accumulate the fresh weight of Chinese 

cabbage with several types of spectral bands to improve 

the performance of the models. Finally, it is necessary to 

verify the performance of the modified model and 

the commercialized spectral imaging sensor using 

various parameters, such as species, management, and 

environment.
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(a) (b)

Figure 7. MLR model graph for predicting fresh weight using two spectral bands (559.60 nm and 768.77 nm) (a), using four spectral bands 
(559.60 nm, 768.77 nm, 590.86 nm, and 723.83 nm) (b)
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