DOI QR코드

DOI QR Code

Improvement of physiological activity and processing quality through structural transformation of natural biomaterials based on radiation technology

방사선분자변환기술 기반 천연 생물소재 구조변환에 따른 가공적성 및 생리활성 증진 연구

  • Byun, Eui-Baek (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Song, Ha-Yeon (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Hye-Min (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Kim, Woo Sik (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lee, Seung Sik (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Dae Seong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Sang-Yong (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Chung, Byung Yeoup (Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 변의백 (한국원자력연구원 첨단방사선연구소) ;
  • 송하연 (한국원자력연구원 첨단방사선연구소) ;
  • 김혜민 (한국원자력연구원 첨단방사선연구소) ;
  • 김우식 (한국원자력연구원 첨단방사선연구소) ;
  • 이승식 (한국원자력연구원 첨단방사선연구소) ;
  • 최대성 (한국원자력연구원 첨단방사선연구소) ;
  • 임상용 (한국원자력연구원 첨단방사선연구소) ;
  • 정병엽 (한국원자력연구원 첨단방사선연구소)
  • Received : 2018.02.20
  • Accepted : 2018.05.10
  • Published : 2018.06.30

Abstract

Radiation technology (RT) has long been applied in various fields for increasing the safety and shelf-life of foods by controlling pathogen-induced poisoning. RT was introduced for the first time in Korea in the 1950s to eliminate harmful microorganisms in food materials. In the 1980s, RT had been scientifically proven to be effective for the sterilization of food and public health products. In recent years, irradiation with gamma rays has also been used for improving physiological properties through the structural modification of natural molecules, which has been proposed to be applicable to various industries. In particular, radiation transformation technology (RTT), which involves the development of new functional compounds through the molecular conversion of natural biomaterials, is becoming a new high-value technology as a fusion technique of RT and biotechnology. The present reports have suggested that RTT can be an effective tool for the development of new functional compounds and improvement of the physiological activity of biomolecules.

Keywords

References

  1. Ahn H, Yook H, Rhee M, Lee C, Cho Y, Byun M. Application of Gamma Irradiation on Breakdown of Hazardous Volatile N-Nitrosamines. J. Food Sci. 67: 596-599 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb10644.x
  2. Albano E, Tomasi A, Persson JO, Terelius Y, Goria-Gatti L, Ingelman-Sundberg M, Dianzani MU. Role of ethanol-inducible cytochrome P450 (P450IIE1) in catalysing the free radical activation of aliphatic alcohols. Biochem. Pharmacol. 41: 1895-1902 (1991) https://doi.org/10.1016/0006-2952(91)90129-S
  3. Badaboina S, Bai HW, Na YH, Park CH, Kim TH, Lee TH, Chung BY. Novel radiolytic rotenone derivative, rotenoisin B with potent anti-carcinogenic activity in hepatic cancer cells. Int. J. Mol. Sci. 16: 16806-16815 (2015) https://doi.org/10.3390/ijms160816806
  4. BeMiller J, Bohn J. ${\beta}$-D-Glucans as biological response modifiers: a review of structure-functional activity. Carbohydr. Polym. 28: 3-14 (1995) https://doi.org/10.1016/0144-8617(95)00076-3
  5. Byun MW. Research status of south korea for food-irradiated technology. Food Sci. Ind. 31: 19-24 (1998)
  6. Byun EB, Jang BS, Byun EH, Sung NY. Effect of gamma irradiation on the change of solubility and anti-inflammation activity of chrysin in macrophage cells and LPS-injected endotoxemic mice. Radiat. Phys. Chem. 127: 276-285 (2016a) https://doi.org/10.1016/j.radphyschem.2016.07.018
  7. Byun EB, Jang BS, Kim HM, Yang MS, Sung NY, Byun EH. Gamma irradiation enhanced Tollip-mediated anti-inflammatory action through structural modification of quercetin in lipopolysaccharide-stimulated macrophages. Int. Immunopharmacol. 42: 157-167 (2017b) https://doi.org/10.1016/j.intimp.2016.11.030
  8. Byun EH., Kim JH, Sung NY, Choi Ji, Lim ST, Kim KH, Yook HS, Byun MW, Lee JW. Effects of gamma irradiation on the physical and structural properties of ${\beta}$-glucan. Radiat. Phys. Chem. 77: 781-786 (2008) https://doi.org/10.1016/j.radphyschem.2007.12.008
  9. Byun EB, Park SH, Jang BS, Sung NY, Byun EH. Gamma-irradiated beta-glucan induces immunomodulation and anticancer activity through MAPK and NF-kappaB pathways. J. Sci. Food Agric. 96: 695-702 (2016b) https://doi.org/10.1002/jsfa.7215
  10. Byun EB, Song H Y, Mushtaq S, Kim HM, Kang JA, Yang MS., Sung NY, Jang BS, Byun EH. Gamma-irradiated luteolin inhibits 3-isobutyl-1-methylxanthine-induced melanogenesis through the regulation of CREB/MITF, PI3K/Akt, and ERK pathways in B16BL6 melanoma cells. J. Med. Food 20: 812-819 (2017a) https://doi.org/10.1089/jmf.2016.3890
  11. Byun EB, Sung NY, Kim JH, Choi JI, Matsui T, Byun MW, Lee JW. Enhancement of anti-tumor activity of gamma-irradiated silk fibroin via immunomodulatory effects. Chem. Biol. Interact. 186: 90-95 (2010) https://doi.org/10.1016/j.cbi.2010.03.032
  12. Byun EB, Sung NY, Park JN, Yang MS, Park SH, Byun EH. Gamma-irradiated resveratrol negatively regulates LPS-induced MAPK and NF-kappaB signaling through TLR4 in macrophages. Int. Immunopharmacol. 25: 249-259 (2015) https://doi.org/10.1016/j.intimp.2015.02.015
  13. Byun EB, Sung NY ,Yang MS, Lee BS, Song DS, Park JN, Kim JH., Jang BS, Choi DS, Park SH, Yu YB, Byun EH. Anti-inflam- matory effect of gamma-irradiated genistein through inhibition of NF-kappaB and MAPK signaling pathway in lipopolysaccharide-induced macrophages. Food Chem. Toxicol. 74: 255-264 (2014) https://doi.org/10.1016/j.fct.2014.08.019
  14. Caulfield CD, Cassidy JP, Kelly JP. Effects of gamma irradiation and pasteurization on the nutritive composition of commercially available animal diets. J. Am. Assoc. Lab. Anim. Sci. 47: 61-66 (2008)
  15. Choi JI., Kim HJ, Lee JW. Structural feature and antioxidant activity of low molecular weight laminarin degraded by gamma irradiation. Food Chem. 129: 520-523 (2011) https://doi.org/10.1016/j.foodchem.2011.03.078
  16. Dauphin J, Saint-Lebe L. Radiation chemistry of carbohydrates. pp. 131-186. In: Radiation chemistry of major food components. Elias PS, Cohen AJ (eds). Elsevier/North-Holland Biomedical press, Amsterdam, Netherlands (1997)
  17. Deitch J. 1982. Economics of food irradiation. Crit. Rev. Food Sci. Nutr. 17: 307-334 (1987)
  18. Delincee H, Ehlermann D. Recent advances in the identification of irradiated food. International Journal of Radiation Applications and Instrumentation. Radiat. Phys. Chem. 34: 877-890 (1989)
  19. Easton CJ. Free-radical reactions in the synthesis of ${\alpha}$-amino acids and derivatives. Chem. Rev. 97: 53-82 (1997) https://doi.org/10.1021/cr9402844
  20. Farkas J, Mohacsi-Farkas C. History and future of food irradiation. Trends Food Sci. Technol. 22: 121-126 (2011) https://doi.org/10.1016/j.tifs.2010.04.002
  21. Francis F. Encyclopedia of Food Sci & Tech. John Wiley & Sons, Inc., New York (2000)
  22. Gaber MH. Effect of ${\gamma}$-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng. 100: 203-206 (2005) https://doi.org/10.1263/jbb.100.203
  23. Giroux M, Lacroix M. Nutritional adequacy of irradiated meat-a review. Food Res. Int. 31: 257-264 (1998) https://doi.org/10.1016/S0963-9969(98)00092-1
  24. Graham WD, Stevenson MH. Effect of irradiation on vitamin C content of strawberries and potatoes in combination with storage and with further cooking in potatoes. J. Sci. Food Agric. 75: 371-377 (1997) https://doi.org/10.1002/(SICI)1097-0010(199711)75:3<371::AID-JSFA890>3.0.CO;2-P
  25. Hasegawa M, Isogai A, Onabe F. Preparation of low-molecular- weight chitosan using phosphoric acid. Carbohydr. Polym. 20: 279-283 (1993) https://doi.org/10.1016/0144-8617(93)90100-I
  26. Hatami T, Moura LS, Khamforoush M, Meireles MAA. Supercritical fluid extraction from Priprioca: Extraction yield and mathematical modeling based on phase equilibria between solid and supercritical phases. J. Supercrit. Fluids 85: 62-67 (2014) https://doi.org/10.1016/j.supflu.2013.10.012
  27. Hawkins CL, Davies MJ. Generation and propagation of radical reactions on proteins. Biochim. Biophys. Acta, Bioenerg. 1504: 196-219 (2001) https://doi.org/10.1016/S0005-2728(00)00252-8
  28. Henriksen T. Radiation-induced radicals in water, deuterium oxide and aqueous solutions of glycine at low temperatures. Nature 193: 371 (1962) https://doi.org/10.1038/193371a0
  29. Hirvonen A, Trapido M, Hentunen J, Tarhanen J. Formation of hydroxylated and dimeric intermediates during oxidation of chlo- rinated phenols in aqueous solution. Chemosphere 41: 1211-1218 (2000) https://doi.org/10.1016/S0045-6535(99)00548-2
  30. Huei CR, Rong CJ, Shyur JS. Effects of ultrasonic conditions and storage in acidic solutions on changes in molecular weight and polydispersity of treated chitosan. Carbohydr. Res. 299: 287-294 (1997) https://doi.org/10.1016/S0008-6215(97)00019-0
  31. Jackson SP. Sensing and repairing DNA double-strand breaks. Carcinogenesis 23: 687-696 (2002) https://doi.org/10.1093/carcin/23.5.687
  32. Jeong S, Park J, Kim J. The development trend of skin beauty food with skin protection effects from natural source. Korean J. Aesthet. Cosmetol. 11: 71-80 (2013)
  33. Josephson ES, Brynjolfsson A, Wierbicki E. Engineering and economics of food irradiation. Trans. N. Y. Acad. Sci. 30: 600-614 (1968) https://doi.org/10.1111/j.2164-0947.1968.tb02501.x
  34. Jumel K, Harding SE, Mitchell JR. Effect of gamma irradiation on the macromolecular integrity of guar gum. Carbohydr. Res. 282: 223-236 (1996) https://doi.org/10.1016/0008-6215(95)00385-1
  35. Jung HJ, Park HR, Jung U, Jo SK. Radiolysis study of genistein in methanolic solution. Radiat. Phys. Chem. 78: 386-393 (2009) https://doi.org/10.1016/j.radphyschem.2009.03.004
  36. Kang H, Chawla S, Jo C, Kwon J, Byun MW. Studies on the devel- opment of functional powder from citrus peel. Bioresour. Technol. 97: 614-620 (2006) https://doi.org/10.1016/j.biortech.2005.03.037
  37. Kang JA, Song HY, Byun EH, Ahn NG, Kim HM, Nam YR, Lee GH, Jang BS, Choi DS, Lee DE, Byun EB. Gamma-irradiated black ginseng extract inhibits mast cell degranulation and suppresses atopic dermatitis-like skin lesions in mice. Food Chem. Toxicol. 111: 133-143 (2018) https://doi.org/10.1016/j.fct.2017.11.006
  38. Katial RK, Grier TJ, Hazelhurst DM, Hershey J, Engler RJ. Deleterious effects of electron beam radiation on allergen extracts. J. Allergy Clin. Immunol. 110: 215-219 (2002) https://doi.org/10.1067/mai.2002.126377
  39. Khalil A, Albachir M, Odeh A. Effect of gamma irradiation on some carcinogenic polycyclic aromatic hydrocarbons (PAHs) in wheat grains. polycyclic aromat. Compd. 361: 873-883 (2016)
  40. Khattak KF, Simpson TJ. Effect of gamma irradiation on the extraction yield, total phenolic content and free radical-scavenging activity of Nigella staiva seed. Food Chem. 110: 967-972 (2008) https://doi.org/10.1016/j.foodchem.2008.03.003
  41. Khattak KF, Simpson TJ. Effect of gamma irradiation on the antimicrobial and free radical scavenging activities of Glycyrrhiza glabra root. Radiat. Phys. Chem. 79: 507-512 (2010) https://doi.org/10.1016/j.radphyschem.2009.10.005
  42. Kim JH, Ahn HJ, Jo C, Park HJ, Chung YJ, Byun MW. Radiolysis of biogenic amines in model system by gamma irradiation. Food Control 15: 405-408 (2004) https://doi.org/10.1016/S0956-7135(03)00102-6
  43. Kim TH, Kim JK, Ito H, Jo C. Enhancement of pancreatic lipase inhibitory activity of curcumin by radiolytic transformation. Bioorg. Med. Chem. Lett. 21: 1512-1514 (2011b) https://doi.org/10.1016/j.bmcl.2010.12.122
  44. Kim DM, Kim KH, Sung NY, Jung PM, Kim JS, Kim JK, Kim JH, Choi JI, Song BS, Lee JW. Effects of gamma irradiation on the extraction yield and whitening activity of polysaccharides from Undaria pinnatifida sporophyll. J. Korean Soc. Food Sci. Nutr. 40: 712-716 (2011a) https://doi.org/10.3746/jkfn.2011.40.5.712
  45. Kim MJ, Lee JW, Yook HS, Lee SY, Kim MC, Byun MW. 2002. Changes in the antigenic and immunoglobulin E-binding properties of hen's egg albumin with the combination of heat and gamma irradiation treatment. J. Food Prot. 65: 1192-1195 (2002) https://doi.org/10.4315/0362-028X-65.7.1192
  46. Kim MJ, Yook HS, Byun MW. Effects of gamma irradiation on microbial contamination and extraction yields of Korean medicinal herbs. Radiat. Phys. Chem. 57, 55-58 (2000) https://doi.org/10.1016/S0969-806X(99)00298-4
  47. Kojthung A, Meesilpa P, Sudatis B, Treeratanapiboon L, Udomsangpetch R, Oonkhanond B. Effects of gamma radiation on biodegradation of Bombyx mori silk fibroin. Int. Biodeterior. Biodegrad. 62: 487-490 (2008) https://doi.org/10.1016/j.ibiod.2007.12.012
  48. Kyzlink V. Principles of food preservation. Elsevier (1990)
  49. Lakritz L, Thayer D. Effect of gamma radiation on total tocopherols in fresh chicken breast muscle. Meat Sci. 37: 439-448 (1994) https://doi.org/10.1016/0309-1740(94)90059-0
  50. Lee NY, Jo C, Sohn SH, Kim JK, Byun MW. Effects of gamma irradiation on the biological activity of green tea byproduct extracts and a comparison with green tea leaf extracts. J. Food Sci. 71 (2006)
  51. Lee SS, Kim TH, Lee EM, Lee MH, Lee HY, Chung BY. Degradation of cyanidin-3-rutinoside and formation of protocatechuic acid methyl ester in methanol solution by gamma irradiation. Food Chem. 156: 312-318 (2014) https://doi.org/10.1016/j.foodchem.2014.01.099
  52. Lee JH, Kim JK, Park JN, Yoon YM, Sung NY, Kim JH, Song BS, Yook HS, Kim BK, Lee JW. Evaluation of instant cup noodle, irradiated for immuno-compromised patients. Radiat. Phys. Chem. 81: 1115-1117 (2012) https://doi.org/10.1016/j.radphyschem.2012.02.010
  53. Lee SJ, Song EJ, Lee SY, Kim KBWR, Yoon SY, Lee CJ, Jung JY, Park NB, Kwak JH, Park JG. Effects of gamma irradiation on antioxidant, antimicrobial activities and physical characteristics of Sargassum thunbergii extract. Korean J. Food Sci. Technol. 421: 431-437 (2010)
  54. Lim S, Choi Ji, Park H, Antioxidant activities of fucoidan degraded by gamma irradiation and acidic hydrolysis. Radiat. Phys. Chem. 109: 23-26 (2015) https://doi.org/10.1016/j.radphyschem.2014.12.008
  55. Marfak A, Trouillas P, Allais D, Calliste C, Cook-Moreau J, Duroux J. Mechanisms of transformation of the antioxidant kaempferol into depsides. Gamma-radiolysis study in methanol and ethanol. Radiat. Res. 160: 355-365 (2003a) https://doi.org/10.1667/RR3024
  56. Marfak A, Trouillas P, Allais DP, Calliste CA, Cook-Moreau J, Duroux JL. Reactivity of flavonoids with 1-hydroxyethyl radical: a ${\gamma}$-radiolysis study. Biochim. Biophys. Acta, Gen. Subj. 1670: 28-39 (2004) https://doi.org/10.1016/j.bbagen.2003.10.010
  57. Marfak A, Trouillas P, Allais DP, Champavier Y, Calliste CA. Duroux JL. Radiolysis of quercetin in methanol solution: observation of depside formation. J. Agric. Food Chem. 50: 4827-4833 (2002) https://doi.org/10.1021/jf020165m
  58. Marfak A, Trouillas P, Allais DP, Champavier Y, Calliste CA, Duroux JL. Radiolysis of kaempferol in water/methanol mixtures. Evaluation of antioxidant activity of kaempferol and products formed. J. Agric. Food Chem. 51: 1270-1277 (2003b) https://doi.org/10.1021/jf020836g
  59. Molins RA. Food irradiation: principles and applications. John Wiley & Sons (2001)
  60. Mohamed KA, Basfar AA, Al-Shahrani AA. Gamma-ray induced degradation of diazinon atrazine in natural groundwaters. J. Hazard. Mater. 166: 810-814 (2009) https://doi.org/10.1016/j.jhazmat.2008.11.081
  61. Moreno P, Salvado V. Determination of eight water-and fat-soluble vitamins in multi-vitamin pharmaceutical formulations by high-performance liquid chromatography. J. Chromatogr. A 870: 207-215 (2000) https://doi.org/10.1016/S0021-9673(99)01021-3
  62. Mujika JI, Uranga J, Matxain JM. Computational study on the attack of OH radicals on aromatic amino acids. Chem-Eur. J 19: 6862-6873 (2013) https://doi.org/10.1002/chem.201203862
  63. Nakai S. Food Irradiation Research and Technology. pp. 947-948. In: CH Sommers, X. Fan (Eds.). Blackwell Publishing (2007)
  64. Nawar W, Zhu Z, Yoo Y. Radiolytic products of lipids as markers for the detection of irradiated meats, Food irradiation and the chemist. Johnston DE, Stevensen MH (eds). pp. 13-24. In: Royal Society of Chemistry, Cambriddge, UK (1990)
  65. Nawar WW. Volatiles from food irradiation. Food Rev. Int. 2: 45-78 (1986) https://doi.org/10.1080/87559128609540788
  66. Park JN, Byun EB, Kim JJ, Jang BS, Park SH. Induction of apopto- sis by gamma-irradiated apigenin in H1975 human non-small lung cells. J. Korean Soc. Food Sci. Nutr. 44: 816-822 (2015) https://doi.org/10.3746/jkfn.2015.44.6.816
  67. Park HJ, Cho YJ. The effect on anti-oxidative activity and increasing extraction yield of Aralia elata Cortex by gamma irradiation. Korean J. Plant Resour. 27: 429-438 (2014) https://doi.org/10.7732/kjpr.2014.27.5.429
  68. Park CH, Chung BY, Lee SS, Bai HW, Cho JY, Jo C, Kim TH. Radiolytic transformation of rotenone with potential anti-adipo- genic activity. Bioorg. Med. Chem. Lett. 23: 1099-1103 (2013) https://doi.org/10.1016/j.bmcl.2012.12.003
  69. Park HR, Lee CH. Radiolytic and antioxidative characteristics of phytic acid by gamma irradiation. J. Korean Soc. Food Sci. Nutr. 331: 1252-1256 (2004)
  70. Perchonok M, Bourland C. NASA food systems: past, present, and future. Nutrition 18, 913-920 (2002) https://doi.org/10.1016/S0899-9007(02)00910-3
  71. Prasad KN, Yang E, Yi C, Zhao M, Jiang Y. Effects of high pressure extraction on the extraction yield, total phenolic content and anti- oxidant activity of longan fruit pericarp. Innov. Food Sci. Emerging Technol.10: 155-159 (2009) https://doi.org/10.1016/j.ifset.2008.11.007
  72. Putnik P, Kovaeeviae DB, Peniae M, Fege M, Dragoviae-Uzelac V. Microwave-assisted extraction (MAE) of dalmatian sage leaves for the optimal yield of polyphenols: HPLC-DAD identification and quantification. Food Anal. Methods 9: 2385-2394 (2016) https://doi.org/10.1007/s12161-016-0428-3
  73. Quint R, Park H, Krajnik P, Solar S, Getoff N, Sehested K. ${\gamma}$-radiolysis and pulse radiolysis of aqueous 4-chloroanisole. Radiat. Phys. Chem. 47: 835-845 (1996) https://doi.org/10.1016/0969-806X(95)00411-P
  74. Raul F, Goss F, Delinc H, Hartwig A, Marchioni E, Miesch M, Werner D, Burnouf D. Food-borne radiolytic compounds (2-alkylcyclobutanones) may promote experimental colon carcinogenesis. Nutr. Cancer 44: 189-191 (2002) https://doi.org/10.1207/S15327914NC4402_11
  75. Seo JH, Lee JW, Lee YS, Lee SY, Kim MR, Yook HS, Byun MW. Change of an egg allergen in a white layer cake containing gamma-irradiated egg white. J. Food Prot. 67: 1725-1730 (2004) https://doi.org/10.4315/0362-028X-67.8.1725
  76. Shang NC, Yu YH, Ma HW, Chang CH, Liou ML. Toxicity measurements in aqueous solution during ozonation of mono-chlorophenols. J. Environ. Manage. 78: 216-222 (2006) https://doi.org/10.1016/j.jenvman.2005.03.015
  77. Shin H, Lee D. Study on the Process to Decrease the Molecular Weight of beta- 1, 6-branched beta- 1, 3-D-Glucans. Korean J. Biotechnol. Bioeng. 18: 352-355 (2003)
  78. Siegbahn K, Axel P. Alpha-, beta-, and gamma-ray spectroscopy. Am. J. Phys. 34: 275-276 (1966) https://doi.org/10.1119/1.1972911
  79. Smith NL. The thiobarbituric acid test in irradiation-sterilized beef. Food Technol. 14: 317-320 (1958)
  80. Sokhey A, Hanna M. Properties of irradiated starches. Food Struct. 12: 2 (1993)
  81. Sommers CH, Fan X. Food Irradiation Research and Technology. Blackwell Publishing 947-948 (2008)
  82. Sung NY, Byun EB, Kwon SK, Kim JH, Song BS, Choi Ji, Kim JK, Yoon Y, Byun MW, Kim MR. Effect of gamma irradiation on the structural and physiological properties of silk fibroin. Food Sci. Biotechnol. 18: 228-233 (2009a)
  83. Sung NY, Byun EH, Kwon SK, Song BS, Choi Ji, Kim JH, Byun MW, Yoo YC, Kim MR, Lee JW. Immune-enhancing activities of low molecular weight ${\beta}$-glucan depolymerized by gamma irradiation. Radiat. Phys. Chem. 78: 433-436 (2009b) https://doi.org/10.1016/j.radphyschem.2009.03.022
  84. Sung NY, Byun EB, Kwon SK, Yoo YC, Jung PM, Kim JH, Choi JI, Kim MR, Lee JW. Preparation and characterization of high-molecular-weight sericin by ${\gamma}$ irradiation. J. Appl. Polym. Sci. 120: 2034-2040 (2011) https://doi.org/10.1002/app.33332
  85. Sung NY, Byun EB, Song DS, Jin YB, Park JN, Kim JK, Park JH, Song BS, Park SH, Lee JW. Anti-inflammatory action of ${\gamma}$-irradiated genistein in murine peritoneal macrophage. Radiat. Phys. Chem. 105: 17-21 (2014) https://doi.org/10.1016/j.radphyschem.2014.05.029
  86. Urbain W. Irradiation of meats and poultry. Food Irradiat. 14-30 (1978)
  87. Velioglu Y, Mazza G, Gao L, Oomah B. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113-4117 (1998) https://doi.org/10.1021/jf9801973
  88. Wu D, Shu Q, Wang Z, Xia Y. Effect of gamma irradiation on starch viscosity and physicochemical properties of different rice. Radiat. Phys. Chem. 65: 79-86 (2002) https://doi.org/10.1016/S0969-806X(01)00676-4
  89. World Health Organization. Wholesomeness of irradiated food, Technical report series 659, World Health Organization, Geneva (1981)
  90. World Health Organization. High-dose irradiation: Wholesomeness of food irradiated with doses above 10 kGy. WHO Technical Report Series 890. Geneva (1999)
  91. Xie H, Jia Z, Huang J, Zhang C. Preparation of low molecular weight chitosan by complex enzymes hydrolysis. Int. J. Chem. 3: 180 (2011)
  92. Xing R, Liu S, Yu H, Zhang Q, Li Z, Li P. Preparation of low-molecular-weight and high-sulfate-content chitosans under microwave radiation and their potential antioxidant activity in vitro. Carbohydr. Res. 339: 2515-2519 (2004) https://doi.org/10.1016/j.carres.2004.08.013