DOI QR코드

DOI QR Code

Angiogenic effects of wood-cultivated ginseng extract and ginsenoside Rg5 in human umbilical vein endothelial cells

혈관내피세포에서 산양삼 추출물과 진세노사이드 Rg5의 혈관신생 효과

  • Kim, Na-Eun (Research and Development Institute, Haesong KNS) ;
  • Lee, Mi-Ok (Research and Development Institute, Haesong KNS) ;
  • Jang, Mi-Hee (Research and Development Institute, Haesong KNS) ;
  • Chung, Byung-Hee (Research and Development Institute, Haesong KNS)
  • 김나은 ((주)해송KNS 기업부설연구소) ;
  • 이미옥 ((주)해송KNS 기업부설연구소) ;
  • 장미희 ((주)해송KNS 기업부설연구소) ;
  • 정병희 ((주)해송KNS 기업부설연구소)
  • Received : 2018.02.01
  • Accepted : 2018.04.04
  • Published : 2018.06.30

Abstract

Ginsenoside Rg5, one of the protopanaxadiol ginsenosides of wood-cultivated ginseng, has been implicated in various diseases, such as diabetes, cancer, and hypertension; however, its angiogenic activity and molecular mechanisms have not yet been elucidated. Here, we found that wood-cultivated ginseng extract and ginsenoside Rg5 increase in vitro proliferation, migration, and tube-like structure formation, which are typical phenomena associated with angiogenesis, in cultured human umbilical vein endothelial cells (HUVECs). Moreover, Ginsenoside Rg5 stimulated the phosphorylation of Akt, endothelial nitric oxide (NO) synthase (eNOS), and extracellular-regulated kinase (ERK)1/2, which are well-known signal mediators of the angiogenic pathway. Furthermore, Ginsenoside Rg5 did not accelerate the activation of ICAM-1 and VCAM-1 which are inflammatory response mediators. These results suggest that wood-cultivated ginseng extract and ginsenoside Rg5 stimulated in vitro angiogenesis by activating the Akt/eNOS- and ERK1/2-dependent signal pathways without inducing vascular inflammation.

본 연구에서는 상처치유(wound healing)와 같은 허혈성 심뇌혈관 질환의 잠재적 치료제로서 산양삼 추출물과 진세노사이드 Rg5의 가능성을 인간 제대정맥 내피세포인 HUVEC에서 확인하고자 하였다. 그 결과, 산양삼 추출물과 Rg5는 10-100 nM의 저농도에서 혈관신생 과정에서 발생하는 세포의 증식이나 이동, 관 형성과정을 유의적으로 증진시켰으며, 그 증가현상은 산양삼 추출물과 Rg5가 유사한 수준으로 발생하였다. 따라서 Rg5를 이용하여 혈관신생 과정에 관여하는 신호전달 메커니즘을 확인한 결과, Akt/eNOS와 ERK1/2의 인산화는 양성대조군으로 사용한 VEGF와 유사한 수준으로 증가되는 것을 확인하였다. 마지막으로 혈관 신생 유도인자이며 양성대조군인 VEGF의 혈관염증 관련 부작용이 Rg5의 혈관신생 효과에도 작용하는지 확인하기 위하여 혈관염증 관련 단백질인 ICAM-1과 VCAM-1의 발현량을 확인한 결과, ICAM-1과VCAM-1의 발현이 양성대조군인 VEGF에서는 유의적으로 증가하였으나 Rg5를 처리한 경우에는 일반 대조군과 유사한 수준으로 낮게 나타났다. 따라서 본 연구는 산양삼 추출물과 Rg5가 혈관신생 유도효과가 있으며, 이러한 현상은 Akt/eNOS와 ERK 관련 신호전달 메커니즘을 통해 진행되고 이러한 효과가 혈관염증은 유도하지 않는다는 것을 입증하였으며, 잠재적 치료제로서의 가능성을 확인하는 계기가 되었다.

Keywords

References

  1. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem. Pharmacol. 58: 1685-1693 (1999) https://doi.org/10.1016/S0006-2952(99)00212-9
  2. Baek SH, Lee IH, Kim MJ, Kim EJ, Ha IH, Lee JH. Component analysis and toxicity study of combined cultivated wild ginseng pharmacopuncture. J. Int. Korean Med. 36: 189-199 (2015)
  3. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem. Sci. 22: 251-256 (1997) https://doi.org/10.1016/S0968-0004(97)01074-8
  4. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: Assessment of radiosensitivity. Cancer Res. 47: 943-946 (1987)
  5. Choi KJ. The constituent of material ginseng and management of quality. Korean J. Ginseng Sci. 15: 247-256 (1991)
  6. Choi SS, Lee JK, Han EJ, Han KJ, Lee HK, Lee J, Suh HW. Effect of ginsenoside Rd on nitric oxide system induced by lipopolysaccharide plus TNF-${\alpha}$ in C6 rat glioma cells. Arch. Pharm. Res. 26: 375-382 (2003) https://doi.org/10.1007/BF02976694
  7. Choi EJ, Lee JM, Won SH, Kwon KR. Effects of cultivated wild ginseng pharmacopuncture on lowering lipid and oxidative capacity in biochemical and molecular biological study in obese rats. J. Pharmacopuncture. 9: 5-20 (2006)
  8. Chung BH, Kim JD, Kim CK, Kim JH, Won MH, Lee HS, Dong M S, Ha KS, Kwon YG, Kim YM. Icariin stimulates angiogenesis by activating the MEK/ERK-and PI3K/Akt/eNOS-dependent signal pathways in human endothelial cells. Biochem. Bioph. Res. Co. 376: 404-408 (2008) https://doi.org/10.1016/j.bbrc.2008.09.001
  9. Chung BH, Lee JJ, Kim JD, Jeoung D, Lee H, Choe J, Ha KS, Kwon YG, Kim YM. Angioginic activity of sesamin through the activation of multiple signal pathways. Biochem. Bioph. Res. Co. 391: 254-260 (2010) https://doi.org/10.1016/j.bbrc.2009.11.045
  10. Dong G, Chen Z, Li ZY, Yeh NT, Bancroft CC, Van Waes C. Hepa- tocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma. Cancer Res. 61: 5911-5918 (2001)
  11. Dulak J, Jozkowicz A. Nitric oxide and angiogenic activity of endot-helial cells: direct or VEGF-dependent effect? Cardiovasc. Res. 56: 487-488 (2002) https://doi.org/10.1016/S0008-6363(02)00670-3
  12. Folkman J. Tumor angiogenesis: therapeutic implications. New Engl. J. Med. 285: 1182-1186 (1971) https://doi.org/10.1056/NEJM197111182852108
  13. Folkman J. Angiogenesis in cancer, vascular, rheumatoid and other diseas. Nat. Med. 1: 27-31 (1995) https://doi.org/10.1038/nm0195-27
  14. Folkman S, Chesney M, Grief. Vancouver Conference Review. Aids Care. 9: 39-43 (1997)
  15. Gratton JP, Lin MI, Yu J, Weiss ED, Jiang ZL, Fairchild TA, Iwakiri Y, Groszmann R, Claffey KP, Cheng YC, Sessa WC. Selective inhibition of tumor microvascular permeability by cavtratin blocks tumor progression in mice. Cancer cell. 4: 31-39 (2003) https://doi.org/10.1016/S1535-6108(03)00168-5
  16. Gavard J, Gutkind JS. VEGF controls endothelial-cell permeability by promoting the ${\beta}$-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell Biol. 8: 1223-1234 (2006) https://doi.org/10.1038/ncb1486
  17. Hanahan D, Folkman J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell. 86: 353-364 (1996) https://doi.org/10.1016/S0092-8674(00)80108-7
  18. Hideo H, Seong JH, Yasatosi M, Masamori W, Hur JD. Metabolites of ginseng saponin by enterobacteria and anticancer substance include it's useful constituent. Korea Plant. 10-164266: 0000 (1998)
  19. Huang D, Ding Y, Luo WM, Bender S, Qian CN, Kort E, Zhang ZF, VandenBeldt K, Duesbery NS, Resau JH, Teh BT. Inhibition of MAPK kinase signaling pathways suppressed renal cell carcinoma growth and angiogenesis in vivo. Cancer Res. 68: 81-88 (2008) https://doi.org/10.1158/0008-5472.CAN-07-5311
  20. Jang HY, Park HS, Kwon KR, Rhim TJ. A study on the comparison of antioxidant effects among wild ginseng, cultivated wild ginseng, and cultivated ginseng extracts. J. Pharmacopuncture. 11: 67-78 (2008) https://doi.org/10.3831/KPI.2008.11.3.067
  21. Jang SB, Lim CS, Jang JH, Kwon KR. Anti-metastatic mechanism of mountain cultivated wild ginseng in human cancer cell line. J. Pharmacopuncture. 13: 37-43 (2010) https://doi.org/10.3831/KPI.2010.13.1.037
  22. Jung CS, Hyun JE, Kim YS. Anti-oxidative Effect of Ginsenoside Rb1 on the HCL.Ethanol-Induced Gastric Tissue in Rats. Kor. J. Pharmacogn. 33: 252-256 (2002)
  23. Kim YJ, Son DY. Antioxidant and inhibitory effects of Korean Panax ginseng extract on pro-inflammatory mediators in LPS-stimulated RAW264. 7 macrophages. J. Korean Soc. Food Sci. Nutr. 41: 1371-1377 (2012) https://doi.org/10.3746/jkfn.2012.41.10.1371
  24. Kim BW, Kwon KR. The effect of cultivated wild ginseng extract on preadipocyte proliferation. J. Pharmacopuncture. 10: 29-35 (2007) https://doi.org/10.3831/KPI.2007.10.3.029
  25. Kim EL, Kim CS, Lee HY, Lee HR, Kim EY, Yoon MC, Shin SS. Mountain cultivated ginseng water boiled extract decreases blood glucose level and improves lipid metabolism in male db/db mice. Korea J. Herb. 27: 69-75 (2012) https://doi.org/10.6116/kjh.2012.27.2.69
  26. Kim I, Moon SO, Kim SH, Kim HJ, Hoh YS, Koh GY. Vascular endothelial growth factor expression of intercellular adhesion molecule 1(ICAM-1), vascular cell adhesion molecule 1(VCAM- 1), and E-selectin through nuclear factor-${\kappa}B$ activation in endothelial cells. J. Biol. Chem. 276: 7614-7620 (2001) https://doi.org/10.1074/jbc.M009705200
  27. Kim YJ, Park DI, Kwon KR. Case report on the improvement of liver functions by mountain cultivated wild ginseng pharmacopuncture. J. Pharmacopuncture. 12: 107-112 (2009) https://doi.org/10.3831/KPI.2009.12.2.107
  28. Kwon KR. Anticancer effect of mountain ginseng Pharmacopuncture to the nude mouse of lung carcinoma induced by NCI-H460 human non-small cell lung cancer cells. J. Pharmacopuncture. 13: 5-14 (2010)
  29. Kwon KR, Cho AL, Lee SG. The study on acute and subacute toxicity and anti-cancer effects of cultivated wild ginseng herbal acupuncture. J. Pharmacopuncture. 6: 7-27 (2003)
  30. Lee SJ, Kim KM, Namkoong S, Kim CK, Kang YC, Lee H, Ha KS, Han JA, Chung HT, Kwon YG, Kim YM. Nitric oxide inhibition of homocysteine-induced human endothelial cell apoptosis by down-regulation of p53-dependent Noxa expression through the formation of S-nitrosohomocysteine. J. Biol. Chem. 280: 5781- 5788 (2005) https://doi.org/10.1074/jbc.M411224200
  31. Lee JH, Kwon KR, Cha BC. Component analysis of cultivated ginseng, red ginseng, cultivated wild ginseng, and red wild ginseng using HPLC method J. Pharmacopuncture. 11: 87-95 (2008)
  32. Lee SJ, Namkoong S, Kim YM, Kim CK, Lee H, Ha KS, Chung HT, Kwon YG, Kim YM. Fractalkine stimulates angiogenesis by activating the Raf-1/MEK/ERK-and PI3K/Akt/eNOS-dependent signal pathways. Am. J. Physiol.-Heart C. 291: H2836-H2846 (2006). https://doi.org/10.1152/ajpheart.00113.2006
  33. Lim W, Mudge KW, Weston LA. Utilization of RAPD markers to assess genetic diversity of wild populations of North American ginseng (Panax quinquefolium). Planta Med. 73: 71-76 (2007)
  34. Lui JHC, Staba EJ. The ginsenosides of various ginseng plants and selected products. J Nat Prod. 43: 340-346 (1980) https://doi.org/10.1021/np50009a004
  35. Min BI, Kim HH, Seo IB, Kwon KR. Antitumor effects and protective effects against doxorubicin-induced testicular toxicity of cultivated wild ginseng extract in the B16/F10 melanoma-bearing C57BL/6 mice. J. Pharmacopuncture. 10: 85-100 (2007)
  36. Morita T. Chemical studies on Panax genus plants grown in Asia. Hiroshima Univ. 6-7 (1986)
  37. Murohara T, Asahara T, Silver M, Bauters C, Masuda H, Kalka C, Kearney M, Chen D, Symes JF, Fishman MC, Huang PL, Isner JM. Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. J. Clin. Invest. 101: 2567 (1998) https://doi.org/10.1172/JCI1560
  38. Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG. Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp. Mol. Med. 37: 588-600 (2005) https://doi.org/10.1038/emm.2005.72
  39. Papapetropoulos A, Rudic RD, Sessa WC. Molecular control of nitric oxide synthases in the cardiovascular system. Cardiovasc. Res. 43: 509-520 (1999) https://doi.org/10.1016/S0008-6363(99)00161-3
  40. Park WP, Lee E, Kwon KR. Effects of distilled Cultivated Wild Ginseng Herbal Acupuncture in Rats with Diabetes Induced by High Fat Diet. J. Pharmacopuncture. 8: 97-108 (2005) https://doi.org/10.3831/KPI.2005.8.2.097
  41. Popovich DG, Kitts DD. Ginsenosides 20 (S)-protopanaxadiol and Rh2 reduce cell proliferation and increase sub-G1 cells in two cultured intestinal cell lines, Int-407 and Caco-2. Can. J. Physiol. Pharm. 82: 183-190 (2004) https://doi.org/10.1139/y04-001
  42. Rhim TJ, Jeong HS, Kim YJ, Kim DY, Han YJ, Kwon HY, Kwon KR. A study on the comparison of antioxidant effects among cultivated ginseng and cultivated wild ginseng extracts-Using the measurement of superoxide and hydroxy radical scavenging activities. J. Pharmacopuncture. 12: 7-12 (2009) https://doi.org/10.3831/KPI.2009.12.2.007
  43. Risau W. Mechanisms of angiogenesis. Nature 386: 671-674 (1997) https://doi.org/10.1038/386671a0
  44. Tonnesen MG, Feng X, Clark RA. Angiogenesis in wound healing. J. Invest. Derm. Symp. P. 5: 40-46 (2000)
  45. Wang W, Zhao Y, Rayburn ER, Hill DL, Wang H, Zhang R. In vitro anti-cancer activity and structure-activity relationships of natural products isolated from fruits of Panax ginseng. Cancer chemoth. Pharm. 59: 589-601 (2007) https://doi.org/10.1007/s00280-006-0300-z
  46. Xin Y, Ni JS, Jiang X, Wang XR, Shi B, Wu JX. Inhibitory effect of 20 (S)-ginsenoside Rg3 on tumor growth. J. Jilin Univ.(Medicine Edition). 1: 024 (2006)
  47. Yokozawa T, Wu Liu Z. The role of ginsenoside-Rd in cisplatin-induced acute renal failure. Renal failure. 22: 115-127 (2000) https://doi.org/10.1081/JDI-100100858