DOI QR코드

DOI QR Code

Spatial and temporal dynamics of the abundance of crustose calcareous algae on the southernmost coral reefs of the western Atlantic (Abrolhos Bank, Brazil)

  • Amado-Filho, Gilberto M. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica) ;
  • Bahia, Ricardo G. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica) ;
  • Mariath, Rodrigo (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica) ;
  • Jesionek, Michel B. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica) ;
  • Moura, Rodrigo Leao (Instituto de Biologia, Universidade Federal do Rio de Janeiro) ;
  • Bastos, Alex C. (Departamento de Oceanografia, Universidade Federal do Espirito Santo) ;
  • Pereira-Filho, Guilherme Henrique (Instituto do Mar, Universidade Federal de Sao Paulo, Campus Baixada Santista) ;
  • Francini-Filho, Ronaldo Bastos (Centro de Ciencias Aplicadas e Educacao, Universidade Federal da Paraiba, Campus IV-Litoral Norte)
  • Received : 2017.09.01
  • Accepted : 2018.02.25
  • Published : 2018.03.15

Abstract

Crustose calcareous algae (CCA) constitute one of the main reef builders on the Abrolhos Bank, Brazil. Once CCA taxonomy is locally understood, differences in growth-forms may be useful for the delimitation of taxa using characteristics such as the presence or absence of surface protuberances. Here, growth-forms were used to identify and quantify the most common CCA taxa on the shallow reefs (3-10 m) of the Abrolhos Bank to determine possible changes in the CCA community over a period of 10 years, and the ecological significance of CCA to local reefs was interpreted. The CCA assemblages were surveyed from 2006-2015 by using fixed photoquadrats at four sites in the inner (10-20 km from the mainland) and mid-shelf reefs (40-75 km from the mainland). The five most common CCA taxa were Pneophyllum conicum, the Lithophyllum kaiserii / Lithophyllum sp. complex, Melyvonnea erubescens, the Hydrolithon boergesenii / Porolithon onkodes complex and Peyssonelia sp. The overall mean CCA cover on the reefs was 20%. A comparison with a previous monitoring study in the same region indicated that the CCA cover nearly doubled from 2003-2008 to 2006-2015. This study reveals that the coral-killing species P. conicum dominated CCA flora on the shallow Abrolhos reefs in the last decade, and the local specific abundance of CCA slightly fluctuated over time and was species- and site-specific. The information obtained in this study contributes to the understanding of the ecology of the key calcifying components of the Abrolhos reefs and provides a useful baseline for exploring the responses of CCA to future environmental changes.

Keywords

References

  1. Abbott, I. A., Riosmena-Rodriguez, R., Kato, A., Squair, C. A., Michael, T. S. & Smith, C. M. 2012. Hawaiian crustose coralline algae: a survey of common species. Hawaii Botanical Science Paper No. 47. University of Hawaii at Manoa, Honolulu, HI, 58 pp.
  2. Adey, W. H. 1975. The algal ridges and coral reefs of St. Croix: their structure and Holocene development. Atoll. Res. Bull. 187:1-67. https://doi.org/10.5479/si.00775630.187.1
  3. Adey, W. H. 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbuleny, alkaline waters. J. Phycol. 34:393-406. https://doi.org/10.1046/j.1529-8817.1998.340393.x
  4. Adey, W. H., Townsend, R. A. & Boykins, W. T. 1982. The crustose coralline algae (Rhodophyta: Corallinacea) of the Hawaiian Islands. Smithson. Contrib. Mar. Sci. 15:1-74.
  5. Adey, W. H. & Vassar, J. M. 1975. Colonization, succession and growth rates of tropical coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:55-69. https://doi.org/10.2216/i0031-8884-14-2-55.1
  6. Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., Francini-Filho, R. B., Pereira-Filho, G. H., Abrantes, D. P., Brasileriro, P. S., Bahia, R. G., Leal, R. N., Kaufman, L., Kleypas, J. A., Farina, M. & Thompson, F. L. 2012. Rhodolith beds are major $CaCO_3$ bio-factories in the Tropical South West Atlantic. PLoS ONE 7:e35171. https://doi.org/10.1371/journal.pone.0035171
  7. Antonius, A. 2001. Pneophyllum conicum, a coralline red alga causing coral reef-death in Mauritius. Coral Reefs 19:418. https://doi.org/10.1007/s003380000126
  8. Babcock, R. & Mundy, C. 1996. Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206:179-201. https://doi.org/10.1016/S0022-0981(96)02622-6
  9. Bahia, R. G. 2014. Algas coralinaceas formadoras de rodolitos da plataforma continental tropical e ilhas oceanicas do Brasil: levantamento florístico e taxonomia. Ph.D. dissertation, Escola Nacional de Botanica Tropical, Rio de Janeiro, 221 pp.
  10. Bahia, R. G., Amado-Filho, G. M., Maneveldt, G. W., Adey, W. H., Johnson, G., Marins, B. V. & Longo, L. L. 2014. Sporolithon tenue sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): a new rhodolith-forming species from the tropical southwestern Atlantic. Phycol. Res. 62:44-54. https://doi.org/10.1111/pre.12033
  11. Ballantine, D. L. & Ruiz, H. 2011. Metapeyssonnelia milleporoides, a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot. Mar. 54:47-51.
  12. Bastos, A. C., Quaresma, V. S., Marangoni, M. B., D'Agostini, D. P., Bourguignon, S. N., Cetto, P. H., Silva, A. E., Amado-Filho, G. M., Moura, R. L. & Collins, M. 2015. Shelf morphology as an indicator of sedimentary regimes: a synthesis from a mixed siliciclastic-carbonate shelf on the eastern Brazilian margin. J. S. Am. Earth Sci. 63:125-136. https://doi.org/10.1016/j.jsames.2015.07.003
  13. Benzoni, F., Basso, D., Caragnano, A. & Rodondi, G. 2011. Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen. Mar. Biol. 158:2419-2428. https://doi.org/10.1007/s00227-011-1743-2
  14. Bittner, L., Payri, C. E., Maneveldt, G. W., Couloux, A., Cruaud, C., de Reviers, B. & Le Gall, L. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol. Phylogenet. Evol. 61:697-713. https://doi.org/10.1016/j.ympev.2011.07.019
  15. Broom, J. E. S., Hart, D. R., Farr, T. J., Nelson, W. A., Neill, K. F., Harvey, A. S. & Woelkerling, W. J. 2008. Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Mol. Phylogenet. Evol. 46:958-973. https://doi.org/10.1016/j.ympev.2007.12.016
  16. Bruce, T., Meirelles, P. M., Garcia, G., Paranhos, R., Rezende, C. E., Moura, R. L., Filho, R. F., Coni, E. O. C., Vasconcelos, A. T., Amado-Filho, G., Hatay, M., Schmieder, R., Edwards, R., Dinsdale, E. & Thompson, F. L. 2012. Abrolhos Bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 7:e36687. https://doi.org/10.1371/journal.pone.0036687
  17. Carro, B., Lopez, L., Pena, V., Barbara, I. & Barreiro, R. 2014. DNA barcoding allows the accurate assessment of European maerl diversity: a Proof-of-Concept study. Phytotaxa 190:176-189. https://doi.org/10.11646/phytotaxa.190.1.12
  18. Dean, A. J., Steneck, R. S., Tager, D. & Pandolfi, J. M. 2015. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 34:581-594. https://doi.org/10.1007/s00338-015-1263-5
  19. Diaz-Perez, L., Rodriguez-Zaragoza, F. A., Ortiz, M., Cupul-Magana, A. L., Carriquiry, J. D., Ríos-Jara, E., Rodriguez-Troncoso, A. P. & Garcia-Rivas, M. C. 2016. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11:e0167252. https://doi.org/10.1371/journal.pone.0167252
  20. Dutra, L. X. C., Kikuchi, R. K. P. & Leao, Z. M. A. N. 2006. Effects of sediment accumulation on reef corals fromAbrolhos, Bahia, Brazil. J. Coast. Res. 39:633-638.
  21. Eckrich, C. E., Engel, M. S. & Peachey, R. B. J. 2011. Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30:131. https://doi.org/10.1007/s00338-010-0683-5
  22. Fabricius, K. & De'ath, G. 2001. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303-309. https://doi.org/10.1007/s003380000120
  23. Figueiredo, M. A. O. 1997. Colonization and growth of crustose coralline algae in Abrolhos, Brazil. In Lessios, H. A. & Macintyre, I. G. (Eds.) Proceedings of the 8th International Coral Reef Symposium, Smithsonian Tropical Research Institute, Panama, pp. 689-694.
  24. Figueiredo, M. A. O. 2006. Diversity of macrophytes in the Abrolhos Bank, Brazil. In Dutra, G. F., Allen, G. R., Werner, T. & McKenna, S. A. (Eds.) A Rapid Marine Biodiversity Assessment of the Abrolhos Bank, Bahia, Brazil. RAP Bulletin of Biological Assessment, Vol. 38. Conservation International, Arlington, VA, pp. 67-74.
  25. Figueiredo, M. A. O. & Steneck, R. S. 2002. Floristic and ecological studies of crustose coralline algae on Brazil's Abrolhos reefs. In Kasim, M. (Ed.) Proceedings of the 9th International Coral Reef Symposium, Ministry of Environment, Indonesian Institute of Sciences, International Society for Reef Studies, Bali, pp. 493-498.
  26. Foslie, M. 1900. New or critical calcareous algae. Kongel. Norske. Vidensk. Selsk. Skr. 5:1-34.
  27. Foster, M. S. 1975. Algal succession in a Macrocystis pyrifera forest. Mar. Biol. 32:313-329. https://doi.org/10.1007/BF00388989
  28. Francini-Filho, R. B., Coni, E. C. O., Meirelles, P. M., Amado-Filho, G. M., Thompson, F. L., Pereira-Filho, G. H., Bastos, A. C., Abrantes, D. P., Ferreira, C. M., Gibran, F. Z., Güth, A. Z., Sumida, P. Y. G., Oliveira, N. L., Kaufman, L., Minte-Vera, C. V. & Moura, R. L. 2013. Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: inferences on natural and anthropogenic drivers. PLoS ONE 8:e54260. https://doi.org/10.1371/journal.pone.0054260
  29. Francini-Filho, R. B. & Moura, R. L. 2008. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18:1166-1179. https://doi.org/10.1002/aqc.966
  30. Harrington, L., Fabricius, K., De'ath, G. & Negri, A. 2004. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428-3437. https://doi.org/10.1890/04-0298
  31. Harvey, As., Woelkerling, W. J., Farr, T., Neill, K. & Nelson, W. A. 2005. Coralline algae of central New Zealand: an identification guide to common 'crustose' species. NIWA Information Series No. 57. National Institute of Water and Atmospheric Research, Wellington, 145 pp.
  32. Hernandez-Kantun, J. J., Gabrielson, P., Hughey, J. R., Pezzolesi, L., Rindi, F., Robinson, N. M., Pena, V., Riosmena-Rodríguez, R., Le Gall, L. & Adey, W. 2016. Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55:619-639. https://doi.org/10.2216/16-7.1
  33. Horta, P. A., Scherner, F., Bouzon, Z. L., Riosmena-Rodrígues, R. & Oliveira, E. C. 2011. Morphology and reproduction of Mesophyllum erubescens (Foslie) Me. Lemoine (Corallinales, Rhodophyta) from Southern Brazil. Rev. Bras. Bot. 34:125-134. https://doi.org/10.1590/S0100-84042011000100011
  34. Jesionek, M. B., Bahia, R. G., Hernández-Kantún, J., Adey, W. H., Yoneshigue-Valentin, Y., Longo, L. L. & Amado-Filho, G. M. 2016. A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae 31:317-340. https://doi.org/10.4490/algae.2016.31.11.16
  35. Johansen, H. W. 1981. Coralline algae: a first synthesis. CRC Press, Boca Raton, FL, 239 pp.
  36. Kato, A., Baba, M. & Suda, S. 2013. Taxonomic circumscription of heterogeneous species Neogoniolithon brassicaflorida (Corallinales, Rhodophyta) in Japan. Phycol. Res. 61:15-26. https://doi.org/10.1111/j.1440-1835.2012.00665.x
  37. Keats, D. W., Chamberlain, Y. M. & Baba, M. 1997. Pneophyllum conicum (Dawson) comb. nov. (Rhodophyta, Corallinaceae), a widespread Indo-Pacific non-geniculate coralline alga that overgrows and kills live coral. Bot.Mar. 40:263-279.
  38. Kendrick, G. A. 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J. Exp. Mar. Biol. Ecol. 147:47-63. https://doi.org/10.1016/0022-0981(91)90036-V
  39. Kikuchi, R. K. P., Leao, Z. M. A. N., Testa, V., Dutra, L. X. C. & Spano, S. 2003. Rapid assessment of the Abrolhos Reefs, Eastern Brazil (Part 1: stony corals and algae). Atoll Res. Bull. 496:172-187. https://doi.org/10.5479/si.00775630.496-9.172
  40. Kohler, K. E. & Gill, S. M. 2006. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32:1259-1269. https://doi.org/10.1016/j.cageo.2005.11.009
  41. Leao, Z. M. A. N. & Dominguez, J. M. L. 2000. Tropical coast of Brazil. Mar. Pollut. Bull. 41:112-122. https://doi.org/10.1016/S0025-326X(00)00105-3
  42. Leao, Z. M. A. N. & Kikuchi, R. K. P. 2001. The Abrolhos reefs of Brazil. In Seeliger, U. & Kjerfve, B. (Eds.) Coastal Marine Ecosystems of Latin America. Ecological Studies (Analysis and Synthesis). Vol. 144. Springer-Verlag, Berlin, pp. 83-96.
  43. Leao, Z. M. A. N. & Kikuchi, R. K. P. 2005. A relic coral fauna threatened by global changes and human activities Eastern Brazil. Mar. Pollut. Bull. 51:599-611. https://doi.org/10.1016/j.marpolbul.2005.04.024
  44. Leao, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. 2003. Corals and coral reefs of Brazil. In Cortes, J. (Ed.) Latin America Coral Reefs. Elsevier Publisher, Amsterdam, pp. 9-52.
  45. Littler, D. S. & Littler, M. M. 2000. Caribbean reef plants: an identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. OffShore Graphics Inc., Washington, DC, 542 pp.
  46. Maneveldt, G. W. 2005. A global revision of the nongeniculate coralline algal genera Porolithon Foslie (defunct) and Hydrolithon Foslie (Corallinales, Rhodophyta). Ph.D. dissertation, University of the Western Cape, CapeTown, 690 pp.
  47. Maneveldt, G. W. & Keats, D. W. 2014. Taxonomic review based on new data of the reef-building alga Porolithon onkodes (Corallinaceae, Corallinales, Rhodophyta) along with other taxa found to be conspecific. Phytotaxa 190:216-249. https://doi.org/10.11646/phytotaxa.190.1.14
  48. Mariath, R., Riosmena-Rodriguez, R. & Figueiredo, M. 2012. Lithothamnion steneckii sp. nov. and Pneophyllum conicum: new coralline red algae (Corallinales, Rhodophyta) for coral reefs of Brazil. Algae 4:249-258.
  49. Mariath, R., Riosmena-Rodriguez, R. & Figueiredo, M. A. O. 2013. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic. Helgol. Mar. Res.67:687-696. https://doi.org/10.1007/s10152-013-0354-3
  50. Matsuda, S. 1989. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7:185-195. https://doi.org/10.1007/BF00301597
  51. Moura, R. L., Secchin, N. A., Amado-Filho, G. M., Francini-Filho, R. B., Freitas, M. O., Minte-Vera, C. V., Teixeira, J. B., Thompson, F. L., Dutra, G. F., Sumida, P. Y. G., Guth, A. Z., Lopes, R. M. & Bastos, A. C. 2013. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70:109-117. https://doi.org/10.1016/j.csr.2013.04.036
  52. Nelson, W. A. 2009. Calcified macroalgae: critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60:787-801. https://doi.org/10.1071/MF08335
  53. Nunes, J. M. C., Guimarães, S. M. P. B., Donnangelo, A., Farias, J. & Horta, P. A. 2008. Taxonomic aspects of three species of non-geniculate coralline algae from Bahia State, Brazil. Rodriguesia 59:75-86. https://doi.org/10.1590/2175-7860200859103
  54. Penrose, D. 1992. Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia. Phycologia 31:338-350. https://doi.org/10.2216/i0031-8884-31-3-4-338.1
  55. Perry, C. T., Spencer, T. & Kench, P. S. 2008. Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27:853-866. https://doi.org/10.1007/s00338-008-0418-z
  56. Pueschel, C. M. & Saunders, G. W. 2009. Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48:480-491. https://doi.org/10.2216/09-04.1
  57. Quinn, J. F. 1982. Competitive hierarchies in marine benthic communities. Oecologia 54:129-135. https://doi.org/10.1007/BF00541119
  58. Reis, V. M., Karez, C. S., Mariath, R., de Moraes, F. C., de Carvalho, R. T., Brasileiro, P. S., da Gama Bahia, R., de Cruz Lotufo, T. M., Ramalho, L. V., Moura, R. L., Francini-Filho, R. B., Pereira-Filho, G. H., Thompson, F. L., Bastos, A. C., Salgado, L. T. & Amado-Filho, G. M. 2016. Carbonate production by benthic communities on shallow coralgal reefs of Abrolhos Bank, Brazil. PLoS ONE 11:e0154417. https://doi.org/10.1371/journal.pone.0154417
  59. Riosmena-Rodriguez, R., Woelkerling, W. J. & Foster, M. S. 1999. Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38:401-417. https://doi.org/10.2216/i0031-8884-38-5-401.1
  60. Rosler, A., Perfectti, F., Pena, V. & Braga, J. C. 2016. Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J. Phycol. 52:412-431. https://doi.org/10.1111/jpy.12404
  61. Segal, B. & Castro, C. B. 2011. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil. Braz. J. Oceanogr. 59:119-129.
  62. Silbiger, N. J., Guadayol, O., Thomas, F. I. M. & Donahue, M. J. 2014. Reefs shift from net accretion to net erosion along a natural environmental gradient. Mar. Ecol. Prog. Ser. 515:33-44. https://doi.org/10.3354/meps10999
  63. Sissini, M. N., Oliveira, M. C., Gabrielson, P. W., Robinson, N. M., Okolodkov, Y. B., Riosmena-Rodríguez, R. & Horta, P. A. 2014. Mesophyllum erubescens (Corallinales, Rhodophyta): so many species in one epithet. Phytotaxa 190:299-319. https://doi.org/10.11646/phytotaxa.190.1.18
  64. Steneck, R. S. 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. In Toomy, D. F. & Nitecki, M. H. (Eds.) Paleoalgology. Springer-Verlag, Berlin, pp. 352-366.
  65. Steneck, R. S. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu. Rev. Ecol. Evol. Syst. 17:273-303. https://doi.org/10.1146/annurev.es.17.110186.001421
  66. Steneck, R. S. & Adey, W. H. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Bot. Mar. 19:197-216.
  67. Sweatman, H., Delean, S. & Syms, C. 2011. Assessing loss of coral cover on Australia's Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30:521-531. https://doi.org/10.1007/s00338-010-0715-1
  68. Tamega, F. T. S. & Figueiredo, M. A. O. 2007. Distribution of crustose coralline algae (Corallinales, Rhodophyta) in the Abrolhos reefs, Bahia, Brazil. Rodriguesia 58:941-947. https://doi.org/10.1590/2175-7860200758413
  69. Tamega, F. T. S., Riosmena-Rodriguez, R., Mariath, R. & Figueiredo, M. A. O. 2014. Nongeniculate coralline red algae (Rhodophyta: Corallinales) in coral reefs from Northeastern Brazil and a description of Neogoniolithon atlanticum sp. nov. Phytotaxa 190:277-298. https://doi.org/10.11646/phytotaxa.190.1.17
  70. Tamega, F. T. S., Riosmena-Rodriguez, R., Spotorno-Oliveira, P., Mariath, R., Khader, S. & Figueiredo, M. A. O. 2015. Taxonomy and distribution of non-geniculate coralline red algae (Corallinales, Rhodophyta) on rocky reefs from Ilha Grande Bay, Brazil. Phytotaxa 192:267-278. https://doi.org/10.11646/phytotaxa.192.4.4
  71. Verheij, E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 32:184-196. https://doi.org/10.2216/i0031-8884-32-3-184.1
  72. Villaca, R. C. & Pitombo, F. B. 1997. Benthic communities of shallow-water reefs of Abrolhos, Brazil. Rev. Bras.Oceanogr. 45:35-43. https://doi.org/10.1590/S1413-77391997000100004
  73. Villas-Boas, A. B., Figueiredo, M. A. O. & Villaça, R. C. 2005. Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll. Braz. J. Oceanogr. 53:147-156. https://doi.org/10.1590/S1679-87592005000200005
  74. Vroom, P. S., Page, K. N., Kenyon, J. C. & Brainard, R. E. 2006. Algae-dominated reefs: numerous reports suggest that reefs must be dominated by coral to be healthy, but many thriving reefs depent more on algae. Am. Sci. 94:430-437. https://doi.org/10.1511/2006.61.1004
  75. Woelkerling, W. J. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, London & Oxford, 268 pp.
  76. Woelkerling, W. J., Irvine, L. M. & Harvey, A. S. 1993. Growthforms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust. Syst. Bot. 6:277-293. https://doi.org/10.1071/SB9930277

Cited by

  1. Colonization, Growth and Productivity of Crustose Coralline Algae in Sunlit Reefs in the Atlantic Southernmost Coral Reef vol.6, pp.2296-7745, 2019, https://doi.org/10.3389/fmars.2019.00081
  2. Sustained mass coral bleaching (2016-2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends vol.38, pp.4, 2019, https://doi.org/10.1007/s00338-019-01789-6
  3. Sporolithon franciscanum sp. nov. (Sporolithales, Rhodophyta), a New Rhodolith-Forming Species from Northeast Brazil vol.12, pp.5, 2020, https://doi.org/10.3390/d12050199
  4. Spatio‐temporal variability of benthic macroalgae in a coral reef system highly influenced by fluvial discharge: Veracruz, Gulf of Mexico vol.41, pp.4, 2018, https://doi.org/10.1111/maec.12596
  5. Macroalgal calcification and the effects of ocean acidification and global warming vol.72, pp.12, 2021, https://doi.org/10.1071/mf20316
  6. Drivers of distribution of the parrotfish Sparisoma frondosum (agassiz, 1831) in Southwest Atlantic rocky reefs: Insights for management and conservation vol.209, pp.None, 2018, https://doi.org/10.1016/j.ocecoaman.2021.105642
  7. Transcriptomic and Physiological Responses of the Tropical Reef Calcified Macroalga Amphiroa fragilissima to Elevated Temperature1 vol.57, pp.4, 2018, https://doi.org/10.1111/jpy.13158
  8. Calcium carbonate production in the southernmost subtropical Atlantic coral reef vol.172, pp.None, 2018, https://doi.org/10.1016/j.marenvres.2021.105490