DOI QR코드

DOI QR Code

Morphology Changes of Hydroxyapatite in Different Hydrolysis Conditions

가수분해 조건에 따른 수산화인회석의 형상변화

  • Choi, Kyoung-Rim (Department of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Lee, Dong-Kyu (Department of Industrial Engineering Chemistry, Chungbuk National University)
  • Received : 2018.05.17
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

Hydroxyapatite has been used for biomaterials since it has high biocompatibility. In this study, c-plane oriented hydroxyapatite was synthesized by hydrolysis of dicalcium phosphate intermediate by controlling temperature, concentration and pH. In basic condition, rod-like hydroxyapatite crystals were aggregated to form irregular particles in low concentration and plate-like particles exposed c-plane of hydroxyapatite crystal were obtained in high concentration, causing difference of 3 mV in zeta potential. Physicochemical properties of product were characterized by XRD, SEM, FT-IR, zeta potential measurement.

수산화인회석은 생체적합성이 뛰어나기 때문에 생체재료로 사용되고 있다. 본 연구에서는 온도, 농도, pH를 조절하여 인산수소칼슘 중간체의 가수분해반응을 통해 c면이 배향된 수산화인회석을 합성하였다. 염기조건에서 전구체의 농도가 낮을 경우 막대 형태의 수산화인회석 결정이 모여 불규칙한 형태의 입자를 만들었고 농도가 높을 경우 수산화인회석결정의 c면이 노출된 판 형태의 입자를 만들었으며 이에 따라 입자의 제타전위 차가 3 mV가 되었다. 생성물의 물리화학적 특성은 XRD, SEM, FT-IR, 제타전위측정기를 통해 평가하였다.

Keywords

References

  1. P. N. Kumta, C. Sfeir, D. H. Lee, D. Olton, D. Choi, "Nanostructured calcium phosphates for biomedical applications: novel synthesis and characterization", Acta Biomateriallia., Vol.1, No.1, pp. 65-83, (2005). https://doi.org/10.1016/j.actbio.2004.09.008
  2. W. Suchanek, M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", Journal of Materials Research, Vol.13, No.1, pp. 94-117, (1998). https://doi.org/10.1557/JMR.1998.0015
  3. T. G. Kim, B. Park, "Synthesis and growth mechanisms of one-dimensional strontium hydroxyapatite nanostructures", Inorganic Chemistry, Vol.44, No.26, pp. 9895-9901, (2005). https://doi.org/10.1021/ic051013m
  4. Q. J. He, Z. L. Huang, "Controlled growth and kinetics of porous hydroxyapatite spheres by a template-directed method", Journal of Crystal Growth, Vol.300, No.2, pp. 460-466, (2007) https://doi.org/10.1016/j.jcrysgro.2006.11.226
  5. S. S. Mehdi, M. T. Khorasani, D. K. Ehsan, A. Jarnshidi, "Synthesis methods for nanosized hydroxyapatite with diverse structure", Acta Biomateriallia, Vol.9, No.8, pp. 7591-7621, (2013). https://doi.org/10.1016/j.actbio.2013.04.012
  6. J. C. Elliott, Studies in inorganic chemistry 18: structure and chemistry of the apatites and other calcium orthophosphate., Elsevier, (1994).
  7. A. K. Lynn, W. Bonfield, "A novel method for the simultaneous, titrant-free control of pH and calcium phosphate mass yield", Accounts of Chemical Research, Vol.38, No.3, pp. 202-207, (2005). https://doi.org/10.1021/ar040234d
  8. L. Wang, G. H. Nancollas, "Calcium orthophosphates: crystallization and dissolution", Chemical Reviews, Vol.108, No.11, pp. 4628-4669, (2008). https://doi.org/10.1021/cr0782574
  9. Z. Zou, X. Liu, L. Chem, K. Lin, J. Chang, "Dental enamel-like hydroxyapatite transformed directly from monetite", Journal of Materials Chemistry, Vol.22, No.42, pp. 22637-22641, (2012). https://doi.org/10.1039/c2jm35430f
  10. Y. X. Pang, X. Bao, "Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles.", Journal of the European Ceramic Society, Vol.23, No.10, pp. 1697-1704, (2003). https://doi.org/10.1016/S0955-2219(02)00413-2
  11. H. Ito, Y. Oaki, H. Imai, "Selective synthesis of various nanoscale morphologies of hydroxyapatite via an intermediate phase", Crystal Growth and Design., Vol.8, No.3, pp. 1055-1059, (2008). https://doi.org/10.1021/cg070443f
  12. E. Landi, A. Tampieri, G. Celotti, S. Sprio, "Densification behaviour and mechanisms of synthetic hydroxyapatites", Journal of European Ceramic Society, Vol.20, pp. 2377-2387, (2000). https://doi.org/10.1016/S0955-2219(00)00154-0
  13. M. Aizawa, T. Matsuura, Z. Zhuang, "Synthesis of single-crystal apatite particles with preferred orientation to the a- and c-axes as models of hard tissue and their applications", Biological and Pharmaceutical Bulletin., Vol.36, No.11, pp. 1654-1661 (2013). https://doi.org/10.1248/bpb.b13-00439
  14. G. K. Toworfe, R. J. Composto, I. M. Shapiro, P. Ducheyne, "Nucleation and growth of calcium phosphate on amine-, carboxyl- and hydroxyl-silane self-assembled monolayers", Biomaterials, Vol.27, No.4, pp. 631-642, (2006). https://doi.org/10.1016/j.biomaterials.2005.06.017
  15. I. Lopez-Valero, C. Gomez-Lorente, R. Boistelle, "Effect of sodium and ammonium ions on occurrence, evolution and crystallinity of calcium phosphates", Journal of Crystal Growth, Vol.121, No.3, pp. 297-304, (1992). https://doi.org/10.1016/0022-0248(92)90139-A