DOI QR코드

DOI QR Code

Process Optimization of Peptides Production from Protein of Crab (Ovalipes punctatus) and Its Antioxidant Capacity Analysis

꽃게(Ovalipes punctatus) 단백질 유래 항산화 기능성 펩타이드 제조 최적공정 확립 및 이화학적 특성

  • Ha, Yoo Jin (Department of Food and Biotechnology, Joongbu University) ;
  • Kim, Do Hyun (Department of Food and Biotechnology, Joongbu University) ;
  • Lee, Byung Hee (Industry Academy Coorporation Foundation, Soon Chungyang University) ;
  • Yoo, Sun Kyun (Research Institute, Natural Well Food)
  • 하유진 (중부대학교 식품생명과학과) ;
  • 김도현 (중부대학교 식품생명과학과) ;
  • 이병의 (순천향대학교 산학협력단) ;
  • 유선균 (중부대학교 식품생명과학과)
  • Received : 2018.05.29
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

Swimming crab(Ovalipes punctatus) is produced in Korea and utilized as semi-processed food at streamed cooked state. Recently, protein hydrolysates have been known as having function such as antioxidant, suppression of hypertension, immunodulatory, alleviation of pain, and antimicrobial activity. This research was investigated to find the functional antioxidant from crab hydrolysates. To fine optimal protease enzyme, alcalase, bromelain, flavourzyme, neutrase, papain, and protamex were selected to evaluate the DPPH radical scavenging activity and finally bromelain to show the best activity was selected. The molecular weight of bromelain hydrolysates were distributed with range from 500 to 3,200 Da and 7 different molecules or more. The amino acids related to antioxidant capacity was about 42.54%. The processes optimization study used was the response surface methodology. The ranges of processes were the reaction temperature of 40 to $60^{\circ}C$, pH 6 to 8, and enzyme concentration 1 to 3%(w/v). As a result, the optimization of process was determined at temperature of $55^{\circ}C$, pH of 6.5, and enzyme concentration of 3%(w/v). In these conditions, degree of hydrolysates were maximum 71.60%. Therefore, we expect that those products are useful as functional food ingredients.

깨다시 꽃게(Ovalipes punctatus)는 갑각류로서 우리나라에서 잡히는 매끈 꽃겟속, 주름 꽃겟속, 톱날 꽃겟속, 민 꽃겟속, 두갈래 민꽃겟속 들 중에 하나이다. 대부분의 꽃게는 가공되지 않은 상태로 찜 또는 찜육 등 반 가공 형태로 산업화 되었지만 최근에 게로부터 생리활성을 나타내는 펩타이드를 생산하는 연구가 발표되고 있다. 본 연구는 항산화 기능성을 나타내는 펩타이드를 선별하고 생산 최저 공정 확립에 연구를 수행 하였다. 사용된 효소 alcalase, bromelain, flavourzyme, neutrase, papain, protamex들 중에서 bromelain으로 생산된 꽃게육 단백질 가수분해물이 가장 높은 활성을 보여 주었다. 꽃게육 단백질의 bromelain 가수분해물의 펩타이드들의 분자량 분포는 500-3,200 Da로서 7 종류의 이상의 펩타이드들로 구성되었다. 가수분해물의 구성아미노산 분포는 항산화 기능성에 관련된 소수성 아미노산은 전체 42.54%를 차지하였다. 가수분해물의 최적 생산 수율 조건을 확립하기 위하여 공정 조건, 효소 반응 온도 $40-60^{\circ}C$, pH 6-8, 효소의 농도 1-3%(w/v)로 표면반응 분석법을 수행한 결과 효소 반응온도 $55^{\circ}C$, 반응 pH 6.5, 효소의 양은 3%(w/v)에서 결정되었다. 최적 조건에서 단백질 가수분해도는 최대 71.60%에 도달하였다.

Keywords

References

  1. S. Assaad, B. Ali, "Antioxidant peptides from marine by-products: Isolation, identification and application in food systems. A review", Journal of Functional Foods, Vol.21, pp.10-26, (2016). https://doi.org/10.1016/j.jff.2015.11.007
  2. O. O. John, T. G. Abraham, N. Ifeanyi, I. S. Shiva, R. Pema, N. Thomas, E. A. Rotimi, A. Michel, "A metabolomics approach for investigating urinary and plasma changes in spontaneously hypertensive rats (SHR) fed with chicken skin protein hydrolysates diets", Journal of Functional Foods, Vol 22, pp.20-23, (2016). https://doi.org/10.1016/j.jff.2016.01.010
  3. D. B. Roberta, H. Pagraigin, B. Declan, K. Joseph, O. Eileen, M. M. Anne, H. Maria, "Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products", Food Chemistry, Vol.124, pp.1296-1307, (2011). https://doi.org/10.1016/j.foodchem.2010.07.004
  4. S. Y. Choi, A. Y. Kim, S. K. Yoo, "Optimization of enzymatic hydrolysis of legs proteins of black body fowl(Ogae) to produce peptides using a commercial protease", J. of Korean Oil Chemists' Soc, Vol.33, pp. 176-185, (2016). https://doi.org/10.12925/jkocs.2016.33.1.176
  5. K. H. S. Farvin, L. L. Andersen, H. H. Nielsen, C. Jacobsen, G. Jacobsen, I. Jacobsen, F. Jessen, "Antioxidant activity of Cod (Gadus morhua) protein hydrolysates: In vitro assays and evaluation in 5% fish oil-in-water emulsion", Food Chemistry, Vol.149, pp.326-334, (2014). https://doi.org/10.1016/j.foodchem.2013.03.075
  6. S. K. Kim, E. Mendis, "Bioactive compounds from marine processing byproducts - A review", Food Research International, Vol.39, pp.383-393, (2006). https://doi.org/10.1016/j.foodres.2005.10.010
  7. J. T. Ryan, R. P. Ross, D. Bolton, G. F. Fitzgerald, C. Stanton, "Bioactive peptides from muscle sources: meat and fish", Nutrients, Vol.3, pp.765-91, (2011). https://doi.org/10.3390/nu3090765
  8. H. Wergedah, B. Liaset, o. A. Gudbrandsen, E. Lied, M. Espe, Z. Muna, S. Mork, R. K. Berge, "Fish protein hydrolysate reduces plasma total cholesterol, increases the proportion of HDL cholesterol, and lowers acyl-CoA:cholesterol acyltransferase activity in liver of Zucker rats", J Nutr., Vol.134, pp.1320-1327, (2004). https://doi.org/10.1093/jn/134.6.1320
  9. Y. J. Ha, S. K. Yoo, "Process Optimization of Peptides Production from Protein of Sea Cucumber and Its Antioxidant Capacity Analysis", J. of Korean Oil Chemists' Soc., Vol.34, No.2 pp. 338-348, (2017).
  10. C. Imjongjirak, P. Amparyup, A. Tassanakajon, "Two novel antimicrobial peptides, arasin likeSp and GRPSp, from the mud crab Scylla paramamosain, exhibit the activity against some crustacean pathogenic bacteria", Fish Shellfish Immunol, Vol.30, No.2 pp. 706-712, (2011). https://doi.org/10.1016/j.fsi.2010.12.031
  11. D. Alain, B. Lucie, S. Linda, P. Yves, B. Laurent, "Demonstration of in vitro anticancer properties of peptide fractions from a snow crab by-products hydrolysate after separation by electrodialysis with ultrafiltration membranes", Separation and Purification Technology, Vol.79, pp. 321-329, (2011). https://doi.org/10.1016/j.seppur.2011.03.016
  12. L. Beaulieu, J. Thibodeau, C. Bonnet, P. Bryl, M. E. Carbonneau, "Detection of antibacterial activity in an enzymatic hydrolysate fraction obtained from processing of Atlantic rock crab (Cancer irroratus) by-products", Pharma Nutrition, Vol.1, pp. 149-157, (2013). https://doi.org/10.1016/j.phanu.2013.05.004
  13. L. Khoo, D. W. Robinette, E. J. Noga, " Callinectin, an Antibacterial Peptide from Blue Crab, Callinectes sapidus, Hemocytes", Marine Biotechnology, Vol.1, pp. 44-51, (1999). https://doi.org/10.1007/PL00011750
  14. Y. J. Ha, A. Y. Kim, S. K. Y, "Optimization of Peptide Production from Leg Meat of Yeonsan Ogae by High Hydrostatic Pressure and Protein Hydrolytic Enzyme and Its Characteristic Analysis", Journal of the Korea Academia-Industrial cooperation Society, Vol.17, No.7 pp. 182-191, (2016). https://doi.org/10.5762/KAIS.2016.17.7.182
  15. J. Adler-Nissen, "Enzymatid hydrolysis of proteins for increased solubility", J Afric Food Chem., Vol.24, pp. 1090-1093, (1976). https://doi.org/10.1021/jf60208a021
  16. Z. Liu, K. L. Schey, "Optimization of a MALDI TOF-TOF Mass Spectrometer for Intact Protein Analysis", J. Am. Soc. Mass Spectrom, Vol.16, pp. 482-490, (2005). https://doi.org/10.1016/j.jasms.2004.12.018
  17. K. Hsu, G. Lu, C. Jao, "Antioxidative properties of peptides prepared fromtuna cooking juice hydrolysates with Orientase (Bacillus subtilis)", Food Research International. Vol.42, pp. 647-665, (2009). https://doi.org/10.1016/j.foodres.2009.02.014
  18. D. M. Yeum, Y. S. Kim, "Antioxidative action of enzymatic hydrolysates of mackerel muscle protein", Korean J. Food & Nutrition, Vol.7, No.2 pp. 128-136, (1994).
  19. R. He, A. T. Girgih, S. A. Malomo, X. Ju, R. E. Aluko, "Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions", Journal of Functional Foods, Vol.5, pp. 19-227, (2013).
  20. A. G. P. Samaranayaka, E. C. Y. L. Chan, "Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications", Journal of Functional Foods, Vol.3, pp. 229-254, (2011). https://doi.org/10.1016/j.jff.2011.05.006
  21. C. C. Udenigwe, R. E. Aluko, "Chemometric Analysis of the Amino Acid Requirements of Antioxidant Food Protein Hydrolysates", Int. J. Mol. Sci., Vol.12, No.5 pp. 3148-3161, (2011). https://doi.org/10.3390/ijms12053148
  22. H. G. Kristinsson, B. A. Rasco, "Fish Protein Hydrolysates: Production, Biochemical, and Functional Properties", Critical Reviews in Food Science and Nutrition, Vol.40, No.1 pp.43-81, (2000). https://doi.org/10.1080/10408690091189266
  23. W. J. Lahl, S. D. Braun, "Enzymatic production of protein hydrolysates for food use", Food Technol., Vol.58, No.10 pp.68, (1994).
  24. H. H. Umesh, B. Sumana, K. S. M. S. Raghavarao, "Use of reverse micellar systems for the extraction and purification of bromelain from pineapple wastes", Bioresour Technol, Vol.99, pp. 4896-4902, (2008). https://doi.org/10.1016/j.biortech.2007.09.038
  25. S. Ketnawa, S. Rawdkuen, P. Chaiwut, "Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae cultivar", Biochem Eng J., Vol.52, pp. 205-211, (2010). https://doi.org/10.1016/j.bej.2010.08.012
  26. A. A. V. Sara, R. S. F. Sandra, H. Haiko, "Enzymatic Hydrolysis of Blue Crab (Callinectes Sapidus) Waste Processing to Obtain Chitin, Protein, and Astaxanthin-Enriched Extract", International Journal of Environmental & Agriculture Research, Vol.3, pp. 81-92, (2017).