DOI QR코드

DOI QR Code

Observability Analysis of INS/GNSS System for Vehicles Moving with a Large Pitch Angle Change

피치각 변화가 큰 궤적에서의 INS/GNSS 통합항법 시스템 가관측성 분석

  • Received : 2018.05.29
  • Accepted : 2018.06.25
  • Published : 2018.06.30

Abstract

The most widely used method for constructing an inertial navigation system (INS)/global navigation satellite system (GNSS) coupling system is to construct an integrated navigation system using a Kalman filter. However, depending on the trajectory, non-observable state variables may be generated. In this case, the state variables are not estimated. To solve this problem, a integrated navigation system is constructed and then an observability analysis is performed. In this paper, a 24th order position-matched Kalman filter is defined to design an INS/GNSS integrated navigation system for vehicles moving with a large pitch angle change. To verify the appropriateness of the error state variables applied to the Kalman filter, an observability analysis was performed. The trajectory was divided into five segments, and the piece-wise constant system (PWCS) was assumed for each segment, and the results were analytically analyzed. The analytical results and the simulation results confirm that the error state parameters of the Kalman filter are well-designed to the estimation side.

INS/GNSS 결합시스템을 구성하기 위해서 일반적으로 널리 사용되는 방법이 칼만필터를 이용한 통합항법 시스템을 구성하는 것이다. 하지만, 궤적에 따라 칼만필터의 상태변수들 중에서 가관측하지 않은 상태변수가 발생할 수도 있으며, 이 경우 해당 상태 변수들은 오차가 추정되지 않는다. 이런 문제를 해결하기 위해서는 일반적으로 통합항법 시스템을 구성한 이후에 가관측성 분석을 수행한다. 본 논문에서는 피치각 변화가 큰 궤적으로 움직이는 항체의 INS/GNSS 통합항법 시스템을 설계하기 위해서 24차의 위치 정합 칼만필터를 정의하였다. 설계에 적용된 오차 상태 변수들의 적절성을 검증하기 위해서 가관측성 분석을 수행하였다. 궤적을 5개의 segment로 구분하고 각 구간에서는 PWCS로 가정하여 가관측성을 해석적으로 분석했으며, 그 결과를 시뮬레이션을 통해서 검증하였다. 가관측성 해석 결과 및 시뮬레이션 결과를 통해서 칼만필터의 오차 상태 변수가 가관측하도록 잘 설계되었음을 확인 하였다.

Keywords

References

  1. J. A. Farrel and M. Barth, The Global Positioning system & Inertial Navigation, New York, NY: McGraw-Hill, 1999.
  2. D. H. Titterton and J. L. Weston, Strapdown Inerital Navigation Technology, London, UK: Peter peregrinis Ltd., 1997.
  3. E. H. Shin and Naser El-Sheimy, "An unscented Kalman filter for in-motion alignment of low-cost IMUs," in Position Location and Navigation Symposium, Monterey: CA, pp. 92-97, 2004.
  4. S. Y. Cho, B. D. Kim, Y. S. Cho and W. S. Choi, “Multi-filter fusion technique for INS/GPS,” Journal of Institute of Control, Robotics and Systems, Vol. 14, No. 7, pp. 702-710, 2008. https://doi.org/10.5302/J.ICROS.2008.14.7.702
  5. K. G. Kim, C. G. Park, M. J. Yu and Y. B. Park, “A performance comparision of extended and unscented Kalman filters for INS/GPS tightly coupled approach,” Journal of Institute of Control, Robotics and Systems, Vol. 14, No. 7, pp. 702-710, 2006. https://doi.org/10.5302/J.ICROS.2008.14.7.702
  6. D. G. Meskin and I. Y. Bar-Itzhack, "Observability analysis of piece-wise constant systems - part I: Theory," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4, pp. 1056-1067, 1992. https://doi.org/10.1109/7.165367
  7. D. G. Meskin and I. Y. Bar-Itzhack, "Observability analysis of piece-wise constant systems - part II: Application to inertial navigation in-flight alignment," IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 4, pp. 1068-1075, 1992. https://doi.org/10.1109/7.165368
  8. Y. F. Jiang and Y. P. Lin, “Error estimation of INS ground alignment through observability analysis,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 28, No. 1, pp. 92-97, 1992. https://doi.org/10.1109/7.135435
  9. J. G. Lee, C. G. Park, and H. W. Park, “Multiposition alignment of strapdown inertial navigation system,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, pp. 1323-1328, 1993. https://doi.org/10.1109/7.259535
  10. S. Y. Cho, “Error analysis of Initial Fine Alignment for Non-Leveling INS,” Journal of Institute of Control, Robotics and Systems, Vol. 14, No. 6, pp. 595-602, 2008. https://doi.org/10.5302/J.ICROS.2008.14.6.595
  11. C. K. Yang, K. Y. Park, H. M. Kim and D. S. Shim, “Transfer alignment using velocity matching/parameter tuning and its performance and observability analysis,” Journal of Advanced Navigation Technology, Vol. 19, No. 5, pp. 389-394, Oct. 2015. https://doi.org/10.12673/jant.2015.19.5.389
  12. S. Y. Cho, “Observability analysis and multi-dimensional filter design of the INS/GPS integrated system for land vehicles,” Journal of Institute of Control, Robotics and Systems, Vol. 14, No. 7, pp. 702-710, 2008. https://doi.org/10.5302/J.ICROS.2008.14.7.702
  13. I. Y. Bar-Itzhack and N. Berman, “Control theoretic approach to inertial navigation systems,” Journal of Guidance and Control, Vol. 11, No. 3, pp. 237-245, 1998.
  14. F. M. Ham, and R. G. Brown, “Observability eigenvalues, and kalman filtering,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, No. 4, pp. 269-273, 1993.
  15. J. W. Seo, H. K. Lee, J. G. Lee and C. G. Park, “Lever arm compensation for GPS/INS/Odometer integrated system,” International Journal of Control, Automation and Systems, Vol. 4, No. 2, pp. 247-254, 2006.