DOI QR코드

DOI QR Code

Microbial Forensics: Bioterrorism and Biocrime

  • Eom, Yong-Bin (Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University)
  • Received : 2018.03.05
  • Accepted : 2018.05.29
  • Published : 2018.06.30

Abstract

Microbes and their toxins can be bioweapons that bioterrorists use them to commit bioterrorism and biocrime. Due to the potential and relative ease of the bioattack, life-threat pathogenic agents (bacteria, viruses, and toxins) as bioweapon revealed the need for a new field of microbial forensics. Microbial forensics is a new scientific discipline combining microbiology and forensic science, which is focused on characterization of evidence from a bioterrorism, biocrime, and an inadvertent release of biothreat agents. The sophisticated analytical tool and knowledge of microbial forensics can provide investigative leads and help determine who was responsible for the biocrime, the source of the bioweapon, and how and where the bioweapon was produced. Among the fields of microbial forensics, this paper will briefly describe evidence collection, handling, packaging, transportation, storage, analytical methods of evidence, and review microbial forensics as a response to bioterrorism and biocrime.

Keywords

References

  1. Baron E. Specimen Collection, Transport, and Processing: Bacteriology, in Manual of Clinical Microbiology, (Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D. Eds), 2015. pp. 270-315. doi: 10.1128/9781555817381.ch18. ASM Press. Washington, DC, USA.
  2. Baron E, Thomson R. Specimen Collection, Transport, and Processing: Bacteriology, in Manual of Clinical Microbiology (Versalovic J, Carroll K, Funke G, Jorgensen J, Landry M, Warnock D. Eds), 2011. pp. 228-271. doi: 10.1128/9781555-816728.ch16. ASM Press. Washington, DC, USA.
  3. Belser LW, Mays EL. Specific inhibition of nitrite oxidation by chlorate and its use in assessing nitrification in soils and sediments. Applied and Environmental Microbiology. 1980. 39: 505-510.
  4. Benschop CC, Quaak FC, Boon ME, Sijen T, Kuiper I. Vaginal microbial flora analysis by next generation sequencing and microarrays; can microbes indicate vaginal origin in a forensic context? International Journal of Legal Medicine. 2012. 126:303-310. https://doi.org/10.1007/s00414-011-0660-8
  5. Broomall SM, Ait Ichou M, Krepps MD, Johnsky LA, Karavis MA, Hubbard KS, Insalaco JM, Betters JL, Redmond BW, Rivers BA, Liem AT, Hill JM, Fochler ET, Roth PA, Rosenzweig CN, Skowronski EW, Gibbons HS. Whole-genome sequencing in microbial forensic analysis of gamma-irradiated microbial materials. Applied and Environmental Microbiology. 2015. 82: 596-607.
  6. Budowle B, Beaudry JA, Barnaby NG, Giusti AM, Bannan JD, Keim P. Role of law enforcement response and microbial forensics in investigation of bioterrorism. Croatian Medical Journal. 2007. 48: 437-449.
  7. Budowle B, Connell ND, Bielecka-Oder A, Colwell RR, Corbett CR, Fletcher J, Forsman M, Kadavy DR, Markotic A, Morse SA, Murch RS, Sajantila A, Schmedes SE, Ternus KL, Turner SD, Minot S. Validation of high throughput sequencing and microbial forensics applications. Investigative Genetics. 2014. 5: 9-26. https://doi.org/10.1186/2041-2223-5-9
  8. Budowle B, Johnson MD, Fraser CM, Leighton TJ, Murch RS, Chakraborty R. Genetic analysis and attribution of microbial forensics evidence. Critical Reviews in Microbiology. 2005a. 31: 233-254. https://doi.org/10.1080/10408410500304082
  9. Budowle B, Schutzer SE, Ascher MS, Atlas RM, Burans JP, Chakraborty R, Dunn JJ, Fraser CM, Franz DR, Leighton TJ, Morse SA, Murch RS, Ravel J, Rock DL, Slezak TR, Velsko SP, Walsh AC, Walters RA. Toward a system of microbial forensics: From sample collection to interpretation of evidence. Applied and Environmental Microbiology. 2005b. 71: 2209-2213. https://doi.org/10.1128/AEM.71.5.2209-2213.2005
  10. Budowle B, Schutzer SE, Burans JP, Beecher DJ, Cebula TA, Chakraborty R, Cobb WT, Fletcher J, Hale ML, Harris RB, Heitkamp MA, Keller FP, Kuske C, Leclerc JE, Marrone BL, McKenna TS, Morse SA, Rodriguez LL, Valentine NB, Yadev J. Quality sample collection, handling, and preservation for an effective microbial forensics program. Applied and Environmental Microbiology. 2006. 72: 6431-6438. https://doi.org/10.1128/AEM.01165-06
  11. Budowle B, Schutzer SE, Morse SA, Martinez KF, Chakraborty R, Marrone BL, Messenger SL, Murch RS, Jackson PJ, Williamson P, Harmon R, Velsko SP. Criteria for validation of methods in microbial forensics. Applied and Environmental Microbiology. 2008. 74: 5599-5607. https://doi.org/10.1128/AEM.00966-08
  12. Campbell CJ, Ghazal P. Molecular signatures for diagnosis of infection: Application of microarray technology. Journal of Applied Microbiology. 2004. 96: 18-23. https://doi.org/10.1046/j.1365-2672.2003.02112.x
  13. Ciammaruconi A. Microchip capillary electrophoresis of multilocus vntr analysis for genotyping of bacillus anthracis and yersinia pestis in microbial forensic cases. Methods in Molecular Biology. 2012. 830: 381-390.
  14. Clark AE, Kaleta EJ, Arora A, Wolk DM. Matrix-assisted laser desorption ionization-time of flight mass spectrometry: A fundamental shift in the routine practice of clinical microbiology. Clinical Microbiology Reviews. 2013. 26: 547-603. https://doi.org/10.1128/CMR.00072-12
  15. Cummings CA, Relman DA. Genomics and microbiology. Microbial forensics--"cross-examining pathogens". Science. 2002. 296: 1976-1979. https://doi.org/10.1126/science.1073125
  16. Fenselau C, Demirev PA. Characterization of intact microorganisms by maldi mass spectrometry. Mass Spectrometry Reviews. 2001. 20: 157-171. https://doi.org/10.1002/mas.10004
  17. Gua Y, Zhab L, Yuna L. Potential usefulness of snp in the 16s rrna gene serving as informative microbial marker for forensic attribution. Forensic Science International: Genetics Supplement Series. 2017. 6: e451-e452. https://doi.org/10.1016/j.fsigss.2017.09.176
  18. Heller MJ. DNA microarray technology: Devices, systems, and applications. Annual Review of Biomedical Engineering. 2002. 4: 129-153. https://doi.org/10.1146/annurev.bioeng.4.020702.153438
  19. Ho YP, Reddy PM, Chen CT, Lo AA. Mass spectrometry in microbial forensics. Forensic Science Review. 2009. 21: 25-50.
  20. Hosokawa-Muto J, Fujinami Y, Mizuno N. Evaluation of the universal viral transport system for long-term storage of virus specimens for microbial forensics. Journal of Forensic and Legal Medicine. 2015. 34: 29-33. https://doi.org/10.1016/j.jflm.2015.04.019
  21. James M, Melcher U, Fletcher J. Evaluating the impacts of stressors of pseudomonas syringae pathovar tomato on the effectiveness of multi-locus variable number tandem repeat analysis and multi-locus sequence typing in microbial forensic investigations. Investigative Genetics. 2014. 5: 10-18. https://doi.org/10.1186/2041-2223-5-10
  22. Javan GT, Finley SJ, Abidin Z, Mulle JG. The thanatomicrobiome: A missing piece of the microbial puzzle of death. Frontiers in Microbiology. 2016. 7: 225-231.
  23. Jung YS, Lee KW, Kim HS, Kim SM, Shin JH, Jung SH, Yong DE. Identification of Microorganisms, in Diagnostic Microbiology. 2017. pp. 148-149. Seoheung Press. Seoul, Korea.
  24. Kim M, Zorraquino V, Tagkopoulos I. Microbial forensics: Predicting phenotypic characteristics and environmental conditions from large-scale gene expression profiles. PLoS Computational Biology. 2015. 11: e1004127. https://doi.org/10.1371/journal.pcbi.1004127
  25. Kotula AW, Pierson MD, Emswiler BS, Guilfoyle JR. Effect of sample transport systems on survival of bacteria in ground beef. Applied and Environmental Microbiology. 1979. 38: 789-794.
  26. Kuiper I. Microbial forensics: Next-generation sequencing as catalyst. EMBO reports. 2016. 17: 1085-1087. https://doi.org/10.15252/embr.201642794
  27. Lederberg J. Infectious history. Science. 2000. 288: 287-293. https://doi.org/10.1126/science.288.5464.287
  28. Lents NH. Current and Future Uses of DNA Microarrays in Forensic Science, in Forensic Chemistry Handbook (Kobilinsky L. Eds), 2011. doi: 10.1002/9781118062241.ch10. John Wiley & Sons, Inc., Hoboken, NJ, USA.
  29. Marshall L GM, Boyce SG, MacNeil S, Freedlander E, Kudesia G. Effect of glycerol on intracellular virus survival: Implications for the clinical use of glycerol-preserved cadaver skin. Burns. 1995. 21: 356-361. https://doi.org/10.1016/0305-4179(95)00006-2
  30. Martiny JB, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA, Green JL, Horner-Devine MC, Kane M, Krumins JA, Kuske CR, Morin PJ, Naeem S, Ovreas L, Reysenbach AL, Smith VH, Staley JT. Microbial biogeography: Putting microorganisms on the map. Nature Reviews Microbiology. 2006. 4: 102-112. https://doi.org/10.1038/nrmicro1341
  31. Massey SE. Comparative microbial genomics and forensics. Microbiology Spectrum. 2016. 4: EMF-0001-2013.
  32. McBride G, Gilpin B. Statistical considerations in environmental microbial forensics. Microbiology Spectrum. 2016. 4: EMF-0005-2015.
  33. Motley ST, Redden CL, Sannes-Lowery KA, Eshoo MW, Hofstadler SA, Burans JP, Rosovitz MJ. Differentiating microbial forensic qpcr target and control products by electrospray ionization mass spectrometry. Biosecurity and Bioterrorism. 2013. 11: 107-117. https://doi.org/10.1089/bsp.2012.0062
  34. Naistat DM, Leblanc R. Proteomics. Journal of Environmental Pathology, Toxicology and Oncology. 2004. 23: 161-178. https://doi.org/10.1615/JEnvPathToxOncol.v23.i3.10
  35. Panicker RC, Huang X, Yao SQ. Recent advances in peptide-based microarray technologies. Combinatorial Chemistry & High Throughput Screening. 2004. 7: 547-556. https://doi.org/10.2174/1386207043328517
  36. Petersen CE, Valentine NB, Wahl KL. Characterization of microorganisms by maldi mass spectrometry. Methods in Molecular Biology. 2009. 492: 367-379.
  37. Rasko DA, Worsham PL, Abshire TG, Stanley ST, Bannan JD, Wilson MR, Langham RJ, Decker RS, Jiang L, Read TD, Phillippy AM, Salzberg SL, Pop M, Van Ert MN, Kenefic LJ, Keim PS, Fraser-Liggett CM, Ravel J. Bacillus anthracis comparative genome analysis in support of the amerithrax investigation. Proceedings of the National Academy of Sciences of the United States of America. 2011. 108: 5027-5032. https://doi.org/10.1073/pnas.1016657108
  38. Read TD, Salzberg SL, Pop M, Shumway M, Umayam L, Jiang L, Holtzapple E, Busch JD, Smith KL, Schupp JM, Solomon D, Keim P, Fraser CM. Comparative genome sequencing for discovery of novel polymorphisms in bacillus anthracis. Science. 2002. 296: 2028-2033. https://doi.org/10.1126/science.1071837
  39. Schmedes SE, Sajantila A, Budowle B. Expansion of microbial forensics. J Clin Microbiol. 2016. 54: 1964-1974. https://doi.org/10.1128/JCM.00046-16
  40. Schutzer SE, Budowle B, Atlas RM. Biocrimes, microbial forensics, and the physician. PLoS Medicin. 2005. 2: e337. https://doi.org/10.1371/journal.pmed.0020337
  41. Taylor LH, Latham SM, Woolhouse ME. Risk factors for human disease emergence. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 2001. 356: 983-989. https://doi.org/10.1098/rstb.2001.0888
  42. United States Center for Disease Control and Prevention. Emergency Preparedness and Response. Bioterrorism Agents/Disease. [Online.] Center for Disease Control and Prevention, Atlanta, GA, USA. 2017. https://emergency.cdc.gov/agent/agentlistcategory.asp.
  43. United States Federal Bureau of Investigation. F. B. I. handbook of forensic services. [Online.] Federal Bureau of Investigation, Washington, DC, USA. 2013. https://www.fbi.gov/filerepository/handbook-of-forensic-services-pdf.pdf/view
  44. van Baare J, Buitenwerf J, Hoekstra MJ, du Pont JS. Virucidal effect of glycerol as used in donor skin preservation. Burns. 1994. 20: Suppl 1: S77-80. https://doi.org/10.1016/0305-4179(94)90096-5
  45. van Baare J, Cameron PU, Vardaxis N, Pagnon J, Reece J, Middelkoop E, Crowe SM. The 1998 lindberg award. Comparison of glycerol preservation with cryopreservation methods on hiv-1 inactivation. The Journal of Burn Care & Rehabilitation. 1998. 19: 494-500. https://doi.org/10.1097/00004630-199811000-00007
  46. van Belkum A. Tracing isolates of bacterial species by multilocus variable number of tandem repeat analysis (mlva). FEMS Immunology and Medical Microbiology. 2007. 49: 22-27. https://doi.org/10.1111/j.1574-695X.2006.00173.x
  47. Walsh SJ. Recent advances in forensic genetics. Expert Review of Molecular Diagnostics. 2004. 4: 31-40. https://doi.org/10.1586/14737159.4.1.31
  48. Wegerhoff F. It's a bug's life-specimen collection, transport, and viability. Micobe. 2006. 1: 180-184.
  49. Wilson ML. General principles of specimen collection and transport. Clinical Infectious Diseases. 1996. 22: 766-777. https://doi.org/10.1093/clinids/22.5.766