DOI QR코드

DOI QR Code

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Woong (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Ahn, Byungkyu (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Mun, Hyunsung (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Yu, Eunho (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Donghyuk (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Ryu, Gyeongchan (Department of Polymer Science & Chemical Engineering, Pusan National University) ;
  • Kim, Wonho (Department of Polymer Science & Chemical Engineering, Pusan National University)
  • Received : 2018.04.13
  • Accepted : 2018.05.24
  • Published : 2018.06.30

Abstract

Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

Keywords

References

  1. E. J. Blok, P. H. Sandstrom, W. Hsu, and A. F. Halasa, U.S. Patent No. 5,994,448 (1999).
  2. T. Fujimaki and N. Oshima, U.S. Patent No. 4,866,131 (1989).
  3. D. A. Joyner, J. W. Kang, T. Hashimoto, K. Yuto, and B. L. Stuck, U.S. Patent No. 5,272,203 (1993).
  4. D. Alexander, "High-performance handling for street or track", ed. by D. Alexander, p. 6-16, Motorbooks International, Minneapolis, 2013.
  5. B. Rampana, D. Tirelli, U. Kuhlmann, C. Cherif, C. Paul, R. A. Torun, and O. Diestel, U.S. Patent No. 8,640,753 (2014).
  6. B. L. Kim, U.S. Patent Application No. 14/750,914 (2017).
  7. R. Shishoo, "Textile advances in the automotive industry", ed. by R. Shinshoo, p. 3-17, CRC press, New York, 2008.
  8. S. Futamura, U.S. Patent No. 4,925,894 (1990).
  9. Y. Li, M. Wang, T. Zhang, F. Zhang, and X. Fu, "Study on dispersion morphology of silica in rubber", Rubber Chem. Technol., 67, 4 (1994).
  10. U. Goerl, A. Hunsche, A. Mueller, and H. Koban, "Investigations into the silica/silane reaction system", Rubber Chem. Technol., 70, 4 (1997).
  11. W. H. Waddell, J. H. O'Haver, L. R. Evans, and J. H. Harwell, "Organic polymer surface modified precipitated silica", J. Appl. Polym. Sci., 55, 12 (1995).
  12. B. Boonstra, H. Cochrane, and E. Dannenberg, "Reinforcement of silicone rubber by particulate silica", Rubber Chem. Technol., 48, 4 (1975).
  13. E. M. Cichomski, "Influence of physical and chemical polymer-filler bonds on tire wet-traction performance indicators for passenger car tire tread materials", KGK. Kautschuk, Gummi, Kunststoffe, 67 (2014).
  14. R. Rauline, U.S. Patent No. 5,227,425 (1993).
  15. A. Kato, A. Tohsan, S. Kohjiya, T. Phakkeeree, P. Phinyocheep, and Y. Ikeda, "Manufacturing and structure of rubber nanocomposites", Progress in Rubber Nanocomposites, 415 (2017).
  16. S. Kobayashi, S. Plotkin, and S. K. Ribeiro, "Energy efficiency technologies for road vehicles", Energy Efficiency, 2, 2 (2009).
  17. K. Holmberg, P. Andersson, and A. Erdemir, "Global energy consumption due to friction in passenger cars", Tribol. Int., 47 (2012).
  18. A. Roberts, "Lubrication studies of smooth rubber contacts", The Physics of Tire Traction. ed. by F. H. Donald and L. B. Alan, p. 179-196, Springer, Boston, MA, 1974.
  19. R. Peterson, C. Eckert, and C. Carr, "Tread compound effects in tire traction", The Physics of Tire Traction. ed. by F. H. Donald and L. B. Alan, p. 223-239, Springer, Boston, MA, 1974.
  20. K. Grosch, "The rolling resistance, wear and traction properties of tread compounds", Rubber Chem. Technol., 69, 3 (1996).
  21. P. H. Sandstrom, J. Zhao, A. S. Puhala, J. J. A. Verthe, P. B. Maxwell, and E. J. Marazzi, U.S. Patent No. 9,205,704 (2015).
  22. G. Heinrich and T. Vilgis, "Why silica technology needs SSBR in high performance tires?: The physics of confined polymers in filled rubbers", KGK. Kautschuk, Gummi, Kunststoffe, 61 (2008).
  23. S. Park, S. Kil, B. Jang, K. Song, and S. Kim, "Influence of amine base dispersing agent on properties of silica filled rubber compounds", Polymer Korea, 25, 4 (2001).
  24. K. Kim and J. Vanderkooi, "Zinc surfactant effects on Nr/Tespd/Silica and SBR/Tespd/Silica compounds", Elast. and Compos., 39, 4 (2004).
  25. H. Ismail, P. Freakley, I. Sutherland, and E. Sheng, "Effects of multifunctional additive on mechanical properties of silica filled natural rubber compound", European Polym. J., 31, 11 (1995).
  26. G. Heideman, J. W. M. Noordermeer, R. N. Datta, and B. van Baarle, "Activators in Accelerated Sulfur Vulcanization, A Review", Rubber Chem. Technol., 77, 512 (2004). https://doi.org/10.5254/1.3547834
  27. G. Heideman, R. N. Datta, J. W. M. Noordermeer, and B. van Baarle, "Influence of Zinc Oxide in Different Stages of Sulfur Vulcanization elucidated by Model Compound Studies", J. Appl. Polym. Sci., 95, 6 (2004).
  28. G. Heideman, J. W. M. Noordermeer, R. N. Datta, and B. van Baarle, "Effect of Zinc Complexes as Activator for Sulfur Vulcanization in Various Rubbers", Rubber Chem.Technol., 78, 2 (2005).
  29. W. S. Kim, D. H. Lee, I. J. Kim, M. J. Son, W. H. Kim, and S. G. Cho, "SBR/organoclay nanocomposites for the application on tire tread compounds", Macromolecular Research, 17, 10 (2009).
  30. A. M. Joseph, B. George, K. Madhusoodanan, and R. Alex, "Current status of sulphur vulcanization and devulcanization chemistry: Process of vulcanization", Rubber Sci., 28, 1 (2015).
  31. S. S Choi, "Difference in bound rubber formation of silica and carbon black with styrene-butadiene rubber", Polym. Adv. Technol., 13, 6 (2002). https://doi.org/10.1002/pat.99
  32. M. J. Wang, T. Wang, Y. L. Wong, J. Shell, and K. Mahmud, "NR/carbon black masterbatch produced with continuous liquid phase mixing", KGK. Kautschuk und Gummi Kunststoffe, 55, 7 (2002).
  33. A. Das, F. R. Costa, U. Wagenknecht, and G. Heinrich, "Nanocomposites based on chloroprene rubber: Effect of chemical nature and organic modification of nanoclay on the vulcanizate properties", European Polym. J., 44, 11 (2008).
  34. B. Johan, "Measurement of the Payne effect", Proceedings of the Conference on the VKRT meeting, May 5th, (2009).
  35. J. Y. Lee, B. K. Ahn, W. Kim, H. S. Moon, H. J. Paik, and W. H. Kim, "The effect of accelerator contents on the vulcanizate structures of SSBR/silica vulcanizates", Compos. Interfaces, 24, 6 (2017).
  36. Booth, V. A. "A study of silica-surface particle interactions", M.S. Dissertation, Oregon Health & Science University (1994).
  37. G. Kraus, "Swelling of filler reinforced vulcanizates", J. Appl. Polym. Sci., 7, 3 (1963). https://doi.org/10.1002/app.1963.070070231
  38. B. Boonstra and E. Dannenberg, "The equilibrium swelling data of filled natural rubber", Rubber Age, 1 (1958).