DOI QR코드

DOI QR Code

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education) ;
  • Li, Xiangxu (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education) ;
  • Cho, Ur Ryong (Research Center of Eco-Friendly & High Performance Chemical Materials, Korea University of Technology and Education)
  • Received : 2018.05.09
  • Accepted : 2018.05.24
  • Published : 2018.06.30

Abstract

Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

Keywords

References

  1. S. Kohjiya, K. Murakami, S. Iio, T. Tanahashi, and Y. Ikeda, "In Situ Filling of Silica onto "Green" Natural Rubber by the Sol-Gel Process", Rubber Chem. Technol., 74, 16 (2001). https://doi.org/10.5254/1.3547635
  2. S. Poompradub, M. Thirakulrati, and P. Prasassarakich, "In situ generated silica in natural rubber latex via the sol-gel technique and properties of the silica rubber composites", Mater. Chem. Phys., 144, 122 (2014). https://doi.org/10.1016/j.matchemphys.2013.12.030
  3. F. Makavipour and R. M. Pashley, "A study of ion adsorption onto surface functionalized silica particles", Chem. Eng. J., 262, 119 (2015). https://doi.org/10.1016/j.cej.2014.09.046
  4. J. Lauwaert, E. De Canck, D. Esquivel, J. W. Thybaut, P. Van Der Voort, and G. B. Marin, "Silanol-Assisted Aldol Condensation on Aminated Silica: Understanding the Arrangement of Functional Groups", Chem. Cat. Chem., 6, 255 (2014).
  5. S. Rostamnia and E. Doustkhah, "Nanoporous silica-sup- ported organocatalyst: a heterogeneous and green hybrid catalyst for organic transformations", RSC Advances, 4, 28238 (2014). https://doi.org/10.1039/C4RA03773A
  6. T. Theppradit, P. Prasassarakich, and S. Poompradub, "Surface modification of silica particles and its effects on cure and mechanical properties of the natural rubber composites", Mater. Chem. Phys., 148, 940 (2014). https://doi.org/10.1016/j.matchemphys.2014.09.003
  7. S. H. Xu, J. Gu, Y. F. Luo, and D. M. Jia, "Effects of partial replacement of silica with surface modified nanocrystalline cellulose on properties of natural rubber nanocomposites", Express Polym. Lett., 6, 1 (2012). https://doi.org/10.3144/expresspolymlett.2012.1
  8. E. Miloskovska, E. Nies, D. Hristova-Bogaerds, M. van Duin, and G. de With, "Influence of reaction parameters on the structure of in situ rubber/silica compounds synthesized via sol-gel reaction", J. Polym. Sci. Pol. Phys., 52, 967 (2014). https://doi.org/10.1002/polb.23516
  9. Y. Ikeda, A. Tanaka, and S. Kohjiya, "Effect of catalyst onin situ silica reinforcement of styrene-butadiene rubber vulcanizate by the sol-gel reaction of tetraethoxysilane", J. Mater. Chem., 7, 455 (1997). https://doi.org/10.1039/a606395k
  10. Y. Ikeda and S. Kohjiya, "In situ formed silica particles in rubber vulcanizate by the sol-gel method", Polym., 38, 4417 (1997). https://doi.org/10.1016/S0032-3861(96)01037-3
  11. H. Tanahashi, S. Osanai, M. Shigekuni, K. Murakami, Y. Ikeda, and S. Kohjiya, "Reinforcement of Acrylonitrile-Butadiene Rubber by Silica Generated in situ", Rubber Chemistry and Technology, 71, 38 (1998). https://doi.org/10.5254/1.3538470
  12. J. Siramanont, V. Tangpasuthadol, A. Intasiri, N. Na-Ranong, and S. Kiatkamjornwong, "Sol-gel process of alkyltriethoxysilane in latex for alkylated silica formation in natural rubber", Polymer Engineering & Science, 49, 1099 (2009). https://doi.org/10.1002/pen.21363
  13. A. K. Manna, P. P. De, D. K. Tripathy, S. K. De, and D. G. Peiffer, "Bonding between precipitated silica and epoxidized natural rubber in the presence of silane coupling agent", J. Appl. Polym. Sci., 74, 389 (1999). https://doi.org/10.1002/(SICI)1097-4628(19991010)74:2<389::AID-APP21>3.0.CO;2-L
  14. Y. Ikeda, S. Poompradub, Y. Morita, and S. Kohjiya, "Preparation of high performance nanocomposite elastomer: effect of reaction conditions on in situ silica generation of high content in natural rubber", J. Sol-Gel Sci. Technol., 45, 299 (2008). https://doi.org/10.1007/s10971-008-1682-7
  15. S. Poompradub, S. Kohjiya, and Y. Ikeda, "Natural rubber/in situ silica nanocomposite of a high silica content", Chem. Lett., 34, 672 (2005). https://doi.org/10.1246/cl.2005.672
  16. Y. Li, B. Han, S. Wen, Y. Lu, H. Yang, L. Zhang, and L. Liu, "Effect of the temperature on surface modification of silica and properties of modified silica filled rubber composites", Compos. Part A-Appl. Sci. Manuf., 62, 52 (2014). https://doi.org/10.1016/j.compositesa.2014.03.007
  17. Q. Zhu, Q. Gao, Y. Guo, C. Q. Yang, and L. Shen, "Modified silica sol coatings for highly hydrophobic cotton and polyester fabrics using a one-step procedure", Ind. Eng. Chem. Res., 50, 5881 (2011). https://doi.org/10.1021/ie101825d
  18. V. Tangpasuthadol, A. Intasiri, D. Nuntivanich, N. Niyompanich, and S. Kiatkamjornwong, "Silica-reinforced natural rubber prepared by the sol-gel process of ethoxysilanes in rubber latex", J. Appl. Polym. Sci., 109, 424 (2008). https://doi.org/10.1002/app.28120
  19. F. Asaro, A. Benedetti, I. Freris, P. Riello, and N. Savko, "Evolution of the nonionic inverse microemulsion- acid-TEOS system during the synthesis of nanosized silica via the sol-gel process", Langmuir, 26, 12917 (2010). https://doi.org/10.1021/la101737x
  20. B. Karmakar, G. De, and D. Ganguli, "Dense silica microspheres from organic and inorganic acid hydrolysis of TEOS", J. Non-Cryst. Solids, 272, 119 (2000). https://doi.org/10.1016/S0022-3093(00)00231-3
  21. L. Zhang, Z. Xing, H. Zhang, Z. Li, X. Wu, X. Zhang, Y. Zhang, and W. Zhou, "High thermostable ordered meso- porous $SiO_2-TiO_2$ coated circulating-bed biofilm reactor for unpredictable photocatalytic and biocatalytic performance", Appl. Catal. B-Environ., 180, 521 (2016). https://doi.org/10.1016/j.apcatb.2015.07.002
  22. S. P. Chenakin, G. Melaet, R. Szukiewicz, and N. Kruse, "XPS study of the surface chemical state of a Pd/($SiO_2+TiO_2$) catalyst after methane oxidation and $SiO_2$ reatment", J. Catal., 312, 1 (2014). https://doi.org/10.1016/j.jcat.2014.01.008
  23. Y. Zhang, K. Y. Rhee, and S. J. Park, "Nanodiamond nano- cluster-decorated graphene oxide/epoxy nanocomposites with enhanced mechanical behavior and thermal stability", Comps. Part B-Eng., 114, 111 (2017). https://doi.org/10.1016/j.compositesb.2017.01.051
  24. C. Amornchaiyapitak, W. Taweepreda, and P. Tangboriboonrat, "Modification of epoxidised natural rubber film surface by polymerisation of methyl methacrylate", Eur. Polym. J., 44, 1782 (2008). https://doi.org/10.1016/j.eurpolymj.2008.03.002
  25. Y. Zhang, X. Ge, F. Deng, M. C. Li, and U. R. Cho, "Fabrication and characterization of rice bran carbon/styrene butadiene rubber composites fabricated by latex compounding method", Polym. Compos., (2015).
  26. T. Xu, Z. Jia, Y. Luo, D. Jia, and Z. Peng, "Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites", Appl. Surf. Sci., 328, 306 (2015). https://doi.org/10.1016/j.apsusc.2014.12.029
  27. D. E. El-Nashar, E. A. M. Youssef, and M. A. A. El-Ghaffar, "Modified phosphate pigments as high performance reinforcing materials for rubber vulcanizates", Mater. Design, 31, 1350 (2010). https://doi.org/10.1016/j.matdes.2009.09.005
  28. N. M. Ahmed, D. E. El-Nashar, and S. L. A. El-Messieh, "Utilization of new micronized and nano-CoO.MgO/kaolin mixed pigments in improving the properties of styrene-butadiene rubber composites", Mater. Design, 32, 170 (2011). https://doi.org/10.1016/j.matdes.2010.06.014
  29. S. Prasertsri and N. Rattanasom, "Fumed and precipitated silica reinforced natural rubber composites prepared from latex system: mechanical and dynamic properties", Polym. Test, 31, 593 (2012). https://doi.org/10.1016/j.polymertesting.2012.03.003
  30. L. J. Murphy, E. Khmelnitskaia, M. J. Wang, and K. Mahmud, "Carbon-Silica Dual Phase Filler: Part IV. Surface Chemistry", Rubber Chem. Technol., 71, 1015 (1998). https://doi.org/10.5254/1.3538507
  31. M. J. Wang, "Effect of filler-elastomer interaction on tire tread performance", KGK. Kaut. Gummi Kunst., 61, 33 (2008).
  32. J. Shen, J. Liu, Y. Gao, X. Li, and L. Zhang, "Elucidating and tuning the strain-induced non-linear behavior of polymer nanocomposites: a detailed molecular dynamics simulation study", Soft Matter., 10, 5099 (2014). https://doi.org/10.1039/C4SM00233D
  33. E. Jaber, H. Luo, W. Li, and D. Gersappe, "Network forma- tion in polymer nanocomposites under shear", Soft Matter., 7, 3852 (2011). https://doi.org/10.1039/c0sm00990c
  34. H. Qiao, M. Chao, D. Hui, J. Liu, J. Zheng, W. Lei, X. Zhou, R. Wang, and L. Zhang, "Enhanced interfacial interaction and excellent performance of silica/epoxy group-functionalized styrene-butadiene rubber (SBR) nanocomposites without any coupling agent", Compos. Part B-Eng., 114, 356 (2017). https://doi.org/10.1016/j.compositesb.2017.02.021
  35. N. Suzuki, F. Yatsuyanagi, M. Ito, and H. Kaidou, "Effects of surface chemistry of silica particles on secondary structure and tensile properties of silica-filled rubber systems", J. Appl. Polym. Sci., 86, 1622 (2002). https://doi.org/10.1002/app.11050
  36. F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, "Effects of secondary structure of fillers on the mechanical properties of silica filled rubber systems", Polym., 42, 9523 (2001).
  37. F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, "Effects of surface chemistry of silica particles on the mechanical properties of silica filled styrene-butadiene rubber systems", Polym. J., 34, 332 (2002). https://doi.org/10.1295/polymj.34.332
  38. X. Liu, S. Zhao, X. Zhang, X. Li, and Y. Bai, "Preparation, structure, and properties of solution-polymerized styrene-butadiene rubber with functionalized end-groups and its silica-filled composites", Polym., 55, 1964 (2014). https://doi.org/10.1016/j.polymer.2014.02.067
  39. T. Sittiphan, P. Prasassarakich, and S. Poompradub, "Styrene grafted natural rubber reinforced by in situ silica generated via sol-gel technique", Mater. Sci. Eng.-B, 181, 39 (2014). https://doi.org/10.1016/j.mseb.2013.11.018
  40. S. S. Choi, C. Nah, and B. W. Jo, "Properties of natural rubber composites reinforced with silica or carbon black: influence of cure accelerator content and filler dispersion", Polym. Int., 52, 1382 (2003). https://doi.org/10.1002/pi.1232
  41. T. H. Mokhothu, A. S. Luyt, and M. Messori, "Reinforcement of EPDM rubber with in situ generated silica particles in the presence of a coupling agent via a sol-gel route", Polym. Test, 33, 97 (2014). https://doi.org/10.1016/j.polymertesting.2013.11.009
  42. C. Lin Jr, W. L. Hergenrother, and A. S. Hilton, "Mooney viscosity stability and polymer filler interactions in silica filled rubbers", Rubber Chem. Technol., 75, 215 (2002). https://doi.org/10.5254/1.3544974
  43. K. J. Kim, and J. VanderKooi, "Temperature effects of silane coupling on moisture treated silica surface", J. Appl. Polym. Sci., 95, 623 (2005). https://doi.org/10.1002/app.21373
  44. H. Qiao, R. Wang, H. Yao, X. Wu, W. Lei, X. Zhou, X. Hu, and L. Zhang, "Design and preparation of natural layered silicate/bio-based elastomer nanocomposites with improved dispersion and interfacial interaction", Polym., 79, 1 (2015). https://doi.org/10.1016/j.polymer.2015.10.011
  45. J. Frohlich, W. Niedermeier, and H. D. Luginsland, "The effect of filler-filler and filler-elastomer interaction on rubber reinforcement", Compos. Part A-Appl. Sci. Manuf., 36, 449 (2005). https://doi.org/10.1016/j.compositesa.2004.10.004