DOI QR코드

DOI QR Code

Analyzing the Characteristics of Pre-service Elementary School Teachers' Modeling and Epistemic Criteria with the Blackbox Simulation Program

블랙박스 시뮬레이션에 참여한 초등예비교사의 모형 구성의 특징과 인식적 기준

  • Received : 2018.02.07
  • Accepted : 2018.05.31
  • Published : 2018.06.30

Abstract

In this study, we investigated the characteristics of participant students' modeling with the blackbox simulation program and epistemic criteria. For this research, we developed a blackbox simulation program, which is an ill-structured problem situation reflecting the scientific practice. This simulation program is applied in the activities. 23 groups, 89 second year students of an education college participated in this activity. They visualized, modeled, modified, and evaluated their thoughts on internal structure in the blackbox. All of students' activities were recorded and analyzed. As a result, the students' models in blackbox activities were categorized into four types considering their form and function. Model evaluation occurred in group model selection. Epistemic criteria such as empirical coherence, comprehensiveness, analogy, simplicity, and implementation were adapted in model evaluation. The educational implications discussed above are as follows: First, the blackbox simulation activities in which the students participated in this study have educational implications in that they provide a context in which the nature of scientific practice can be experienced explicitly and implicitly by constructing and testing models. Second, from the beginning of the activity, epistemic criteria such as empirical coherence, comprehensiveness, analogy, simplicity, and implementation were not strictly adapted and dynamically flexibly adapted according to the context. Third, the study of epistemic criteria in various contexts as well as in the context of this study will broaden the horizon of understanding the nature of scientific practice. Simulation activity, which is the context of this study, can lead to research related to computational thinking that will be more important in future society. We expect to be able to lead more discussions by furthering this study by elaborating and systematizing its context and method.

본 연구에서는 블랙박스 시뮬레이션 활동 과정에서 연구 참여 학생들의 모형 구성 특징과 인식적 기준을 탐색하였다. 연구를 위해 과학적 실행을 반영하는 비구조화된 문제상황인 블랙박스 시뮬레이션을 개발하여 활동에 적용하였다. 이 과정에 교육대학교 2학년 89명의 학생들이 참여하여 23개 모둠으로 나누어 블랙박스 내부구조에 대한 그들의 생각을 다양하게 가시화하여 모형화하고 수정하고 평가하는 등의 활동을 하였다. 모든 학생들의 활동 과정은 녹음 및 녹화되었고 분석에 활용하였다. 연구의 결과로 블랙박스 활동에서 학생들이 구성한 모형은 형태와 기능을 고려하여 4가지 유형으로 범주화되었다. 대표 모형을 선택하는 과정에서 모형 평가가 나타났으며, 모형 평가에는 실험적 정합성, 포괄성, 유비, 간명성, 구현가능성의 인식적 기준이 적용되었다. 이상의 연구 과정과 결과를 토대로 논의된 교육적 함의는 다음과 같다. 첫째, 이 연구에서 학생들이 참여한 블랙박스 시뮬레이션 활동은 모형을 구성하고 시험해 보면서 과학적 실행의 본질을 명시적 및 암묵적으로 체험할 수 있는 맥락을 제공하였다는데 교육적 의미가 있다. 둘째, 활동 초기부터 학생들이 모형 구성에 적용한 인식적 기준들, 즉 실험적 정합성, 포괄성, 유비, 간명성, 구현가능성이 모두 엄격하게 작동하진 않았으며 맥락에 따라 역동적으로 적용되었다. 셋째, 이 연구의 맥락뿐 아니라 다양하고 구체적인 맥락에서의 인식적 기준에 대한 연구는 과학적 실행의 본질에 대한 이해의 지평을 넓혀줄 것이다. 본 연구의 맥락이었던 시뮬레이션 활동은 미래 사회에서 더욱 중요시될 컴퓨팅적 사고와 연관된 연구로 이어질 수 있으며, 시범 연구인 본 연구의 맥락과 방법을 더 정교화 및 체계화한 추후 연구는 과학적 실행의 본질에 대한 풍부한 논의를 이끌 수 있을 것으로 기대한다.

Keywords

References

  1. Cho, E., Kim, C., & Choe, S. (2017). An Investigation into the secondary science teachers’ perception on scientific models and modeling. Journal of the Korean Association for Science Education, 37(5), 859-877. https://doi.org/10.14697/JKASE.2017.37.5.859
  2. Clement, J. J., & Rea-Ramirez, M. A. (2008). Model based learning and instruction in science. New York, NY: Springer.
  3. de Jong, T., & van Joolingen, W. R. (2007). Model-facilitated learning. In J. M. Spector,M. D. Merrill, J. J. G. van Merrienboer, & M. P. Driscoll (Eds.), Hand book of research on educational communications and technology (3ed., pp. 457-468). NewYork: Lawrence Erlbaum.
  4. Giere, R. N., Bickle, J., & Mauldin, R. F. (2006). Understanding scientific reasoning (5th Edition). Belmont, CA: Wadsworth.
  5. Halloun, I. (2007). Modeling theory in science education (Vol. 24). Netherlands: Springer Science & Business Media.
  6. Hestenes, D. (1987). Toward a modeling theory of physics instruction. American journal of physics, 55(5), 440-454. https://doi.org/10.1119/1.15129
  7. Hodson, D. (2009). Teaching and learning about science: Language, theories, methods, history, traditions and values. Rotterdam, The Netherland: Sense Publisher.
  8. Irzik, G., & Nola, R. (2011). A family resemblance approach to the nature of science for science education. Science & Education, 20(7), 591-607. https://doi.org/10.1007/s11191-010-9293-4
  9. Jang, E., Kim, C., & Choe, E. (2017). Study of the roles of smart devices in co-constructing scientific model. Journal of the Korean Association for Science Education, 37(5), 813-824. https://doi.org/10.14697/JKASE.2017.37.5.813
  10. Jang, H. (2014). Science meets philosophy. Seoul: EBS Media Co.
  11. Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369-387. https://doi.org/10.1080/09500690110110142
  12. Kang, E., Kim, C., Choe, S., Yoo, J., Park, H., Lee, S., & Kim, H. (2012). Small group interaction and norms in the process of constructing a model for blood flow in the heart. Journal of the Korean Association for Science Education, 32(2), 372-387. https://doi.org/10.14697/jkase.2012.32.2.372
  13. Kang, N. (2017). Korean teachers’ conceptions of models and modeling in science and science teaching. Journal of the Korean Association for Science Education, 37(1), 145-154.
  14. Kang, N., & Lee, E. (2013). An analysis of inquiry activities in high school physics textbooks for the 2009 revised science curriculum. Journal of the Korean Association for Science Education, 33(1), 132-143. https://doi.org/10.14697/jkase.2013.33.1.132
  15. Koponen, I. T. (2007). Models and modelling in physics education: A critical re-analysis of philosophical underpinnings and suggestions for revisions. Science & Education, 16(7), 751-773. https://doi.org/10.1007/s11191-006-9000-7
  16. Kuhn, T. S. (1977). The essential tension. Chicago: University of Chicago Press.
  17. Lee, D. (2015). Middle school students' and science teachers' conceptual world and modeling of color perception. (Unpublished Ph.D thesis). Seoul National University, Seoul.
  18. Lee, D., & Yoo, J. (2016). College-students' modeling of thermoacoustic refrigeration phenomena. New Phys.: Sae Mulli, 66(6), 719-733. https://doi.org/10.3938/NPSM.66.719
  19. Laudan, L., Donovan, A., Laudan, R., Barker, P., Brown, H., Leplin, J., Thagard, P., & Wykstra, S. (1986). Scientific change: Philosophical models and historical research. Synthese, 69(2), 141-223. https://doi.org/10.1007/BF00413981
  20. Lopes, J. B., & Costa, N. (2007). The evaluation of modelling competences: Difficulties and potentials for the learning of the sciences. International Journal of Science Education, 29(7), 811-851. https://doi.org/10.1080/09500690600855385
  21. McComas, W. F., (2002). The nature of science in education. Dordrecht, Netherlands: Springer
  22. Ministry of Education, Korea (2015). Science curriculum. Seoul, Korea: Ministry of Education.
  23. Mulder, Y. G., Bollen, L., de Jong, T., & Lazonder A. W. (2016). Scaffolding learning by modelling: The effects of partially worked-out models. Journal of Research in Science Teaching, 53(3), 502-523. https://doi.org/10.1002/tea.21260
  24. National Research Council (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  25. Oh, P., & Lee J. (2014) Criteria for evaluating scientific models used by pre-service elementary teachers. Journal of the Korean Association for Science Education, 34(2), 135-146. https://doi.org/10.14697/jkase.2014.34.2.0135
  26. Park, H., Choi, J., Kim, C., Kim, H. Yoo, J., Jang S., & Choe, S. (2016). The change in modeling ability of science-gifted students through the co-construction of scientific model. Journal of the Korean Association for Science Education, 36(1), 15-28. https://doi.org/10.14697/jkase.2016.36.1.0015
  27. Park, J. (2014). The roles of visual perception and interpretation of interference fringe image in pre-service teachers' model development of standing waves in a pipe. (Unpublished Ph.D thesis). Seoul National University, Seoul.
  28. Park, J. (2017). Development and application of scientific model co-construction program about image formation by convex lens. Korean Journal of Optics and Photonics, 28(5), 203-212.
  29. Park, S., Lee, S., Kim, H. (2014). Exploring middle school students’ metacognitive development via collaborative reflection of small-group argumentation in science classroom. Biology Education, 42(1), 1-15. https://doi.org/10.15717/bioedu.2014.42.1.1
  30. Pluta, W. J., Chinn, C. A., & Duncan, R. G. (2011). Learners’ epistemic criteria for good scientific models. Journal of Research in Science Teaching, 48(5), 486-511. https://doi.org/10.1002/tea.20415
  31. Ryu S. (2016). In-Service teachers’ understanding of epistemic criteria for scientific arguments. International Journal of Software Engineering and Its Applications, 12(10), 379-388.
  32. Staley, K. W. (2004). The evidence for the top quark: Objectivity and bias in collaborative experimentation. Cambridge: Cambridge University Press