DOI QR코드

DOI QR Code

Comparison of Quantitative Interfacial Adhesion Energy Measurement Method between Copper RDL and WPR Dielectric Interface for FOWLP Applications

FOWLP 적용을 위한 Cu 재배선과 WPR 절연층 계면의 정량적 계면접착에너지 측정방법 비교 평가

  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Jina (School of Materials Science and Engineering, Andong National University) ;
  • Park, Se-hoon (ICT device Packaging Research Center, Korea Electronics Technology Institute) ;
  • Kang, Sumin (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 이진아 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 박세훈 (전자부품연구원 ICT 디바이스 패키징 센터) ;
  • 강수민 (한국과학기술원 기계공학과) ;
  • 김택수 (한국과학기술원 기계공학과) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2018.06.18
  • Accepted : 2018.06.27
  • Published : 2018.06.30

Abstract

The quantitative interfacial adhesion energy measurement method of copper redistribution layer and WPR dielectric interface were investigated using $90^{\circ}$ peel test, 4-point bending test, double cantilever beam (DCB) measurement for FOWLP Applications. Measured interfacial adhesion energy values of all three methods were higher than $5J/m^2$, which is considered as a minimum criterion for reliable Cu/low-k integration with CMP processes without delamination. Measured energy values increase with increasing phase angle, that is, in order of DCB, 4-point bending test, and $90^{\circ}$ peel test due to increasing roughness-related shielding and plastic energy dissipation effects, which match well interfacial fracture mechanics theory. Considering adhesion specimen preparation process, phase angle, measurement accuracy and bonding energy levels, both DCB and 4-point bending test methods are recommended for quantitative adhesion energy measurement of RDL interface depending on the real application situations.

Fan-out wafer level packaging (FOWLP) 적용을 위한 최적의 Cu 재배선 계면접착에너지 측정방법을 도출하기 위해, 전기도금 Cu 박막과 WPR 절연층 계면의 정량적 계면접착에너지를 $90^{\circ}$ 필 테스트, 4점 굽힘 시험법, double cantilever beam (DCB) 측정법을 통해 비교 평가 하였다. 측정 결과, 세 가지 측정법 모두 배선 및 패키징 공정 후 박리가 일어나지 않는 산업체 통용 기준인 $5J/m^2$보다 높게 측정되었다. 또한, DCB, 4점 굽힘 시험법, $90^{\circ}$ 필 테스트 순으로 계면접착에너지가 증가하는 거동을 보였는데, 이는 계면파괴역학 이론에 의해 위상각 증가에 따라 이종재료 계면균열 선단의 전단응력성분 증가에 따른 소성변형에너지 및 계면 거칠기 증가 효과에 의한 것으로 설명이 가능하다. FOWLP 재배선에 대한 최적의 계면접착에너지 도출을 위해서는 시편제작 공정, 위상각 차이, 정량적 측정 정확도 및 결합력 크기 등을 고려하여 4점 굽힘 시험법 또는 DCB 측정법을 적절히 혼용 사용하는 것이 타당한 것으로 판단된다.

Keywords

References

  1. S. E. Kim, "Heterogeneous Device Packaging Technology for the Internet of Things Applications", J. Microelectron. Packag. Soc., 23(3), 1 (2016). https://doi.org/10.6117/KMEPS.2016.23.3.001
  2. E. J. Vardaman, "FO-WLP Market and Technology Trends", Proc. 2017 International Conference on Electronics Packaging (ICEP), Tendo, 318, IEEE (2017).
  3. T. Fujiwara, Y. Shoji, Y. Masuda, K. Hashimoto, Y. Koyama, K. Isobe, H. Araki, R. Okuda, and M. Tomikawa, "Higher Reliability for Low-temperature Curable Positive-Tone Photo-definable Dielectric Materials", Proc. 19th Electronics Packaging Technology Conference (EPTC), Singapore, IEEE (2017).
  4. V. S. Rao, C. T. Chong, D. Ho, and D. M. Zhi, "Process and Reliability of Large Fan-Out Wafer Level Package based Package-on-Package", Proc. 67th Electronic Components and Technology Conference (ECTC), San Diego, IEEE (2017).
  5. Z. Chen, F. Che, M. Z. Ding, D. S. W. Ho, T. C. Chai, and V. Srinivasa, "Drop Impact Reliability Test and Failure Analysis for Large Size High Density FOWLP Package on Package", Proc. 67th Electronic Components and Technology Conference (ECTC), San Diego, IEEE (2017).
  6. K. S. Kim, and N. Aravas, "Elastoplastic analysis of the peel test", Int. J. Solids Struct., 24(4), 417 (1988). https://doi.org/10.1016/0020-7683(88)90071-6
  7. S. C. Park, J. H. Lee, J. W. Lee, I. H. Lee, S. E. Lee, B. I. Song, Y. K. Chung, and Y. B. Park, "Effect of Ar+ RF Plasma Treatment Conditions on Interfacial Adhesion Energy Between Cu and ALD Al2O3 Thin Films for Embedded PCB Applications", J. Microelectron. Packag. Soc., 14(1), 61 (2007).
  8. R. Shaviv, S. Toham, and P. Woytowitz, "Optimizing the Precision of the Four-point Bend Test for the Measurement of Thin-film Adhesion", Microelectronic Eng., 82(2), 99 (2005). https://doi.org/10.1016/j.mee.2005.06.006
  9. E. J. Jang, S. Pfeiffer, B. Kim, T. Matthias, S. M. Hyun, H. J. Lee, and Y. B. Park, "Effect of Post-Annealing Conditions on Interfacial Adhesion Energy of Cu-Cu Bonding for 3-D IC Integration", Korean J. Mater. Res., 18(4), 204 (2008). https://doi.org/10.3740/MRSK.2008.18.4.204
  10. I. H. Lee, S. H. Kim, J. H. Yun, I. K. Park, and T. S. Kim, "Interfacial toughening of solution processed Ag nanoparticle thin films by organic residuals", Nanotechnology, 23(48), 1 (2012).
  11. R. J. Hohlfelder, D. A. Maidenberg, and R. H. Dauskardt, "Adhesion of benzocyclobutene-passivated silicon in epoxy layered structures", J. Mater. Res., 16(1), 243 (2001). https://doi.org/10.1557/JMR.2001.0037
  12. M. F. Kanninen, "An augmented double cantilever beam model for studying crack propagation and arrest", Int. J. of Fract., 9(1), 83 (1973). https://doi.org/10.1007/BF00035958
  13. T. S. Kim, N. Tsuji, N. Kemeling, K. Matsushita, D. Chumakov, H. Geisler, E. Zschech, and R. H. Dausdardt, "Depth dependence of ultraviolet curing of organosilicate low-k thin films", J. Appl. Phys. 103(6), 064108 (2008). https://doi.org/10.1063/1.2894727
  14. C. Nair, F. Pieralisi, F. Liu, V. Sundaram, U. Muehlfeld, M. Hanika, S. Ramaswami, and R. Tummala, "Sputtered Ti-Cu as a Superior Barrier and Seed Layer for Panel-based High-Density RDL Wiring Structures", Proc. 65th Electronic Components and Technology Conference (ECTC), San Diego, IEEE (2015).
  15. T. Y. Kang, C. Park, W. Seo, G. Kim, and S. J. Hong, "Reactive Ion Etching of WPR for Via Formation in High Density 3-D Stacking Technology", J. Kor. Phys. Soc, 55(5), 1877 (2009). https://doi.org/10.3938/jkps.55.1877
  16. T. Schwarz, H. Stahr, and A. Cardoso, "Merging of packaging technologies for highly integrated embedded modules", Proc. 6th Electronic Systerm-Integration Technology Conference (ESTC), France, IEEE (2016).
  17. K. J. Min, S. C. Park, J. J. Lee, K. H. Lee, and Y. B. Park, "Interfacial fracture Energy between Electroless Plated Ni film and Polyimide for Flexible PCB Applications", J. Micro-electron. Packag. Soc., 14(1), 39 (2007).
  18. Y. B. Park, I. S. Park, and J. Yu, "Interfacial Fracture Energy Measurements in the Cu/Cr/Polyimide System", Mater. Sci. Eng. A., 266(1), 261 (1999). https://doi.org/10.1016/S0921-5093(98)01117-4
  19. R. H. Dauskardt, M. Lane, Q. Ma, and N. Krishna, "Adhesion and debonding of multi-layer thin film structures", Engng. Fract. Mech., 61(1), 141 (1998). https://doi.org/10.1016/S0013-7944(98)00052-6
  20. P. G. Charalambides, J. Lund, A. G. Evans, and R. M. McMeeking, "A test specimen for determining the fracture resistance of biomaterial interfaces", J. Appl. Mech., 111, 77 (1989).
  21. M. Lane, "Interface fracture", Annu. Rev. Mater. Res., 33, 29 (2003). https://doi.org/10.1146/annurev.matsci.33.012202.130440
  22. J. W. Hutchinson, and Z. Suo, "Mixed Mode Cracking in Layered Materials", Adv. Appl. Mech., 29, 63 (1992).
  23. M. D. Thouless, and Q. D.Yang, "A Parametric Study of the Peel test", Int. J. Adhes. Adhes., 28(4-5), 176 (2008). https://doi.org/10.1016/j.ijadhadh.2007.06.006
  24. Y. B. Park, and J. Yu, "Phase angle in the Cu/polyimide/alumina system", Mater. Sci. Eng. A., 266(1), 109 (1999). https://doi.org/10.1016/S0921-5093(99)00023-4
  25. X. Dai, M. V. Brillhart, and P. S. Ho, "Adhesion Measurement for Electronic Packaging Applications Using Double Cantilever Beam Method", IEEE T. on Compon. Pack. T., 23(1), 101 (2000). https://doi.org/10.1109/6144.833049

Cited by

  1. 휨을 고려한 칩 패키지의 EMC/PCB 계면 접합 에너지 측정 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.101
  2. 미세 배선 적용을 위한 Ta/Cu 적층 구조에 따른 계면접착에너지 평가 및 분석 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.039
  3. 수소 플라즈마 처리를 이용한 구리-구리 저온 본딩 vol.28, pp.4, 2018, https://doi.org/10.6117/kmeps.2021.28.4.109