DOI QR코드

DOI QR Code

Beneficial effects of Panax ginseng for the treatment and prevention of neurodegenerative diseases: past findings and future directions

  • Kim, Ki Hyun (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Dahae (School of Pharmacy, Sungkyunkwan University) ;
  • Lee, Hye Lim (College of Korean Medicine, Gachon University) ;
  • Kim, Chang-Eop (College of Korean Medicine, Gachon University) ;
  • Jung, Kiwon (Institute of Pharmaceutical Sciences, College of Pharmacy, CHA University) ;
  • Kang, Ki Sung (College of Korean Medicine, Gachon University)
  • Received : 2016.11.16
  • Accepted : 2017.03.15
  • Published : 2018.07.15

Abstract

In recent years, several therapeutic drugs have been rationally designed and synthesized based on the novel knowledge gained from investigating the actions of biologically active chemicals derived from foods, plants, and medicinal herbs. One of the major advantages of these naturalistic chemicals is their ability to interact with multiple targets in the body resulting in a combined beneficial effect. Ginseng is a perennial herb (Araliaceae family), a species within the genus Panax, and a highly valued and popular medicinal plant. Evidence for the medicinal and health benefits of Panax ginseng and its components in preventing neurodegeneration has increased significantly in the past decade. The beneficial effects of P. ginseng on neurodegenerative diseases have been attributed primarily to the antioxidative and immunomodulatory activities of its ginsenoside components. Mechanistic studies on the neuroprotective effects of ginsenosides revealed that they act not only as antioxidants but also as modulators of intracellular neuronal signaling and metabolism, cell survival/death genes, and mitochondrial function. The goal of the present paper is to provide a brief review of recent knowledge and developments concerning the beneficial effects as well as the mechanism of action of P. ginseng and its components in the treatment and prevention of neurodegenerative diseases.

Keywords

References

  1. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  2. Shin BK, Kwon SW, Park JH. Chemical diversity of ginseng saponins from Panax ginseng. J Ginseng Res 2015;39:287-98. https://doi.org/10.1016/j.jgr.2014.12.005
  3. Kim DH. Chemical diversity of Panax ginseng, Panax quinquifolium, and Panax notoginseng. J Ginseng Res 2012;36:1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  4. Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochem Rev 2005;4:159-75. https://doi.org/10.1007/s11101-005-2835-8
  5. Liu CX, Xiao PG. Recent advances on ginseng research in China. J Ethnopharmacol 1992;36:27-38. https://doi.org/10.1016/0378-8741(92)90057-X
  6. Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. J Ethnopharmacol 2010;130:421-3. https://doi.org/10.1016/j.jep.2010.05.027
  7. Lee SM, Bae BS, Park HW, Ahn NG, Cho BG, Cho YL, Kwak YS. Characterization of Korean Red Ginseng (Panax ginseng Meyer): history, preparation method, and chemical composition. J Ginseng Res 2015;39:384-91. https://doi.org/10.1016/j.jgr.2015.04.009
  8. Han MS, Han IH, Lee D, An JM, Kim SN, Shin MS, Yamabe N, Hwang GS, Yoo HH, Choi SJ. Beneficial effects of fermented black ginseng and its ginsenoside 20 (S)-Rg3 against cisplatin-induced nephrotoxicity in LLC-PK1 cells. J Ginseng Res 2016;40:135-40. https://doi.org/10.1016/j.jgr.2015.06.006
  9. Park JY, Choi P, Kim HK, Kang KS, Ham J. Increase in apoptotic effect of Panax ginseng by microwave processing in human prostate cancer cells: in vitro and in vivo studies. J Ginseng Res 2016;40:62-7. https://doi.org/10.1016/j.jgr.2015.04.007
  10. Babiker LB, Gadkariem EA, Alashban RM, Aljohar HI. Investigation of stability of Korean ginseng in herbal drug product. Am J Appl Sci 2014;11:160-70. https://doi.org/10.3844/ajassp.2014.160.170
  11. Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 1996;20:145-50. https://doi.org/10.1016/0891-5849(95)02020-9
  12. Yun TK, Choi SY, Yun HY. Epidemiological study on cancer prevention by ginseng: are all kinds of cancers preventable by ginseng? J Korean Med Sci 2001;16:S19-27. https://doi.org/10.3346/jkms.2001.16.S.S19
  13. Joo SS, Won TJ, Lee DI. Reciprocal activity of ginsenosides in the production of proinflammatory repertoire, and their potential roles in neuroprotection in vitro. Planta Med 2005;71:476-81. https://doi.org/10.1055/s-2005-864145
  14. Jung CH, Seog HM, Choi IW, Choi HD, Cho HY. Effects of wild ginseng (Panax ginseng CA Meyer) leaves on lipid peroxidation levels and antioxidant enzyme activities in streptozotocin diabetic rats. J Ethnopharmacol 2005;98:245-50. https://doi.org/10.1016/j.jep.2004.12.030
  15. Fang Y, Shen N, Chen X. Beneficial changes in prostacyclin and thromboxane A2 induced by ginsenosides in myocardial infarction and reperfusion injury in dogs. Zhongguo Yao Li Xue Bao 1986;7:226-30.
  16. Sakata T, Etou H, Fujimoto K, Ockuma K, Hayashi T, Arichi S. Central effects of ginsenosides on the feeding behavior and response to stress in rats. In: Korea-Japan Panax ginseng Symposium; 1987. p. 20-8.
  17. Fujimoto K, Sakata T, Ishimaru T, Etou H, Ookuma K, Kurokawa M, Machidori H. Attenuation of anorexia induced by heat or surgery during sustained administration of ginsenoside Rg1 into rat third ventricle. Psychopharmacology 1989;99:257-60. https://doi.org/10.1007/BF00442819
  18. Xie JT, McHendale S, Yuan CS. Ginseng and diabetes. Am J Chin Med 2005;33:397-404. https://doi.org/10.1142/S0192415X05003004
  19. Yang G, Park D, Lee J, Song BS, Jeon TH, Kang SJ, Jeon JH, Shin S, Jeong HS, Lee HJ. Suppressive effects of red ginseng preparations on SW480 colon cancer xenografts in mice. Food Sci Biotechnol 2011;20:1649-53. https://doi.org/10.1007/s10068-011-0227-y
  20. Cho IH. Effects of Panax ginseng in neurodegenerative diseases. J Ginseng Res 2012;36:342. https://doi.org/10.5142/jgr.2012.36.4.342
  21. Kang SW, Min HY. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36:354-68. https://doi.org/10.5142/jgr.2012.36.4.354
  22. Park J. Recent studies on the chemical constituents of Korean ginseng (Panax ginseng CA Meyer). Korean J Ginseng Sci 1996;20:389-415.
  23. Elyakov G, Strigina L, Uvarova N, Vaskovsky V, Dzizenko A, Kochetkov N. Glycosides from ginseng roots. Tetrahedron Lett 1964;5:3591-7. https://doi.org/10.1016/S0040-4039(01)89378-3
  24. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull 1963;11:759-61. https://doi.org/10.1248/cpb.11.759
  25. Lu JM, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  26. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B Analyt Technol Biomed Life Sci 2004;812:119-33. https://doi.org/10.1016/S1570-0232(04)00645-2
  27. Lee SM. Thermal conversion pathways of ginsenoside in red ginseng processing. Nat Prod Sci 2014;20:119-25.
  28. Takahashi M, Yoshikura M. Studies on the components of Panax ginseng CA Meyer. V. On the structure of a new acetylene derivative "panaxynol" (3). Synthesis of 1,9-(cis)-heptadecadiene-4,6-diyn-3-ol. Yakugaku Zasshi 1966;86:1053-6. https://doi.org/10.1248/yakushi1947.86.11_1053
  29. Kong YH, Lee YC, Choi SY. Neuroprotective and anti-inflammatory effects of phenolic compounds in Panax ginseng CA Meyer. J Ginseng Res 2009;33:111-4. https://doi.org/10.5142/JGR.2009.33.2.111
  30. Chung IM, Lim JJ, Ahn MS, Jeong HN, An TJ, Kim SH. Comparative phenolic compound profiles and antioxidative activity of the fruit, leaves, and roots of Korean ginseng (Panax ginseng Meyer) according to cultivation years. J Ginseng Res 2016;40:68-75. https://doi.org/10.1016/j.jgr.2015.05.006
  31. Lee H, Yoo B, Byun S. Differences in phenolic acids between Korean ginsengs and mountain ginsengs. Korean J Biotechnol Bioeng 2000;15:323-8.
  32. Iwabuchi H, Yoshikura M, Kamisako W. Studies on the sesquiterpenoids of Panax ginseng C. A. Meyer. II. Isolation and structure determination of ginsenol, a novel sesquiterpene alcohol. Chem Pharm Bull (Tokyo) 1988;36:2447-51. https://doi.org/10.1248/cpb.36.2447
  33. Richter R, Basar S, Koch A, Konig WA. Three sesquiterpene hydrocarbons from the roots of Panax ginseng CA Meyer (Araliaceae). Phytochemistry 2005;66:2708-13. https://doi.org/10.1016/j.phytochem.2005.09.012
  34. Wang JY, Li XG, Yang XW. Ginsenine, a new alkaloid from the berry of Panax ginseng CA Meyer. J Asian Nat Prod Res 2006;8:605-8. https://doi.org/10.1080/10286020500208444
  35. Konno C, Murakami M, Oshima Y, Hikino H. Isolation and hypoglycemic activity of panaxans Q, R, S, T and U, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:69-74. https://doi.org/10.1016/0378-8741(85)90030-3
  36. Konno C, Sugiyama K, Kano M, Takahashi M, Hikino H. Isolation and hypoglycaemic activity of panaxans A, B, C, D and E, glycans of Panax ginseng roots. Planta Med 1984;50:434-6. https://doi.org/10.1055/s-2007-969757
  37. Oshima Y, Konno C, Hikino H. Isolation and hypoglycemic activity of panaxans I, J, K and L, glycans of Panax ginseng roots. J Ethnopharmacol 1985;14:255-9. https://doi.org/10.1016/0378-8741(85)90091-1
  38. Tomoda M, Takeda K, Shimizu N, Gonda R, Ohara N, Takada K, Hirabayashi K. Characterization of two acidic polysaccharides having immunological activities from the root of Panax ginseng. Biol Pharm Bull 1993;16:22-5. https://doi.org/10.1248/bpb.16.22
  39. Zhang X, Yu L, Bi HT, Li XH, Ni WH, Han H, Li N, Wang BQ, Zhou YF, Tai GH. Total fractionation and characterization of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer. Carbohyd Polym 2009;77:544-52. https://doi.org/10.1016/j.carbpol.2009.01.034
  40. Fan YY, Sun CX, Gao XG, Wang F, Li XZ, Kassim RM, Tai GH, Zhou YF. Neuroprotective effects of ginseng pectin through the activation of ERK/MAPK and Akt survival signaling pathways. Mol Med Rep 2012;5:1185-90.
  41. Fan YY, Cheng HR, Liu D, Zhang X, Wang B, Sun L, Tai GH, Zhou YF. The inhibitory effect of ginseng pectin on L-929 cell migration. Arch Pharm Res 2010;33:681-9. https://doi.org/10.1007/s12272-010-0506-9
  42. Francis PT, Palmer AM, Snape M, Wilcock GK. The cholinergic hypothesis of Alzheimer's disease: a review of progress. J Neurol Neurosurg Psychiatry 1999;66:137-47. https://doi.org/10.1136/jnnp.66.2.137
  43. Tong LM, Fong H, Huang Y. Stem cell therapy for Alzheimer's disease and related disorders: current status and future perspectives. Exp Mol Med 2015;47:e151. https://doi.org/10.1038/emm.2014.124
  44. Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT. Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 2011;1:a006189.
  45. Musiek ES, Xiong DD, Holtzman DM. Sleep, circadian rhythms, and the pathogenesis of Alzheimer disease. Exp Mol Med 2015;47:e148. https://doi.org/10.1038/emm.2014.121
  46. Ciechanover A, Kwon YT. Degradation of misfolded proteins in neurodegenerative diseases: therapeutic targets and strategies. Exp Mol Med 2015;47:e147. https://doi.org/10.1038/emm.2014.117
  47. Bajda M, Guzior N, Ignasik M, Malawska B. Multi-target-directed ligands in Alzheimer's disease treatment. Curr Med Chem 2011;18:4949-75. https://doi.org/10.2174/092986711797535245
  48. Mancuso C, Bates TE, Butterfield DA, Calafato S, Cornelius C, Lorenzo AD, Dinkova Kostova AT, Calabrese V. Natural antioxidants in Alzheimer's disease. Expert Opin Investig Drugs 2007;16:1921-31. https://doi.org/10.1517/13543784.16.12.1921
  49. Zhao BS, Liu Y, Gao XY, Zhai HQ, Guo JY, Wang XY. Effects of ginsenoside Rg1 on the expression of toll-like receptor 3, 4 and their signalling transduction factors in the NG108-15 murine neuroglial cell line. Molecules 2014;19:16925-36. https://doi.org/10.3390/molecules191016925
  50. Hwang JY, Shim JS, Song MY, Yim SV, Lee SE, Park KS. Proteomic analysis reveals that the protective effects of ginsenoside Rb1 are associated with the actin cytoskeleton in ${\beta}$-amyloid-treated neuronal cells. J Ginseng Res 2016;40:278-84. https://doi.org/10.1016/j.jgr.2015.09.004
  51. Tan X, Gu J, Zhao B, Wang S, Yuan J, Wang C, Chen J, Liu J, Feng L, Jia X. Ginseng improves cognitive deficit via the RAGE/$NF-{\kappa}B$ pathway in advanced glycation end product-induced rats. J Ginseng Res 2015;39:116-24. https://doi.org/10.1016/j.jgr.2014.09.002
  52. Zhang Y, Pi Z, Song F, Liu Z. Ginsenosides attenuate d-galactose-and AlCl 3-inducedspatial memory impairment by restoring the dysfunction of the neurotransmitter systems in the rat model of Alzheimer's disease. J Ethnopharmacol 2016;194:188-95. https://doi.org/10.1016/j.jep.2016.09.007
  53. Zhao H, Li Q, Li Y. Long-term ginsenoside administration prevents memory loss in aged female C57BL/6J mice by modulating the redox status and upregulating the plasticity-related proteins in hippocampus. Neuroscience 2011;183:189-202. https://doi.org/10.1016/j.neuroscience.2011.03.048
  54. Zhao H, Li Q, Zhang Z, Pei X, Wang J, Li Y. Long-term ginsenoside consumption prevents memory loss in aged SAMP8 mice by decreasing oxidative stress and up-regulating the plasticity-related proteins in hippocampus. Brain Res 2009;1256:111-22. https://doi.org/10.1016/j.brainres.2008.12.031
  55. Hou J, Xue J, Lee M, Yu J, Sung C. Long-term administration of ginsenoside Rh1 enhances learning and memory by promoting cell survival in the mouse hippocampus. Int J Mol Med 2014;33:234-40. https://doi.org/10.3892/ijmm.2013.1552
  56. Chu S, Gu J, Feng L, Liu J, Zhang M, Jia X, Liu M, Yao D. Ginsenoside Rg5 improves cognitive dysfunction and beta-amyloid deposition in STZ-induced memory impaired rats via attenuating neuroinflammatory responses. Int Immunopharmacol 2014;19:317-26. https://doi.org/10.1016/j.intimp.2014.01.018
  57. Kim EJ, Jung IH, Van Le TK, Jeong JJ, Kim NJ, Kim DH. Ginsenosides Rg5 and Rh3 protect scopolamine-induced memory deficits in mice. J Ethnopharmacol 2013;146:294-9. https://doi.org/10.1016/j.jep.2012.12.047
  58. Song XY, Hu JF, Chu SF, Zhang Z, Xu S, Yuan YH, Han N, Liu Y, Niu F, He X. Ginsenoside Rg1 attenuates okadaic acid induced spatial memory impairment by the $GSK3{\beta}/tau$ signaling pathway and the $A{\beta}$ formation prevention in rats. Eur J Pharmacol 2013;710:29-38. https://doi.org/10.1016/j.ejphar.2013.03.051
  59. Heo JH, Lee ST, Chu K, Oh MJ, Park HJ, Shim JY, Kim M. Heat-processed ginseng enhances the cognitive function in patients with moderately severe Alzheimer's disease. Nutr Neurosci 2012;15:278-82. https://doi.org/10.1179/1476830512Y.0000000027
  60. Wang Y, Yang G, Gong J, Lu F, Diao Q, Sun J, Zhang K, Tian J, Liu J. Ginseng for Alzheimer's disease: a systematic review and meta-analysis of randomized controlled trials. Curr Top Med Chem 2016;16:529-36.
  61. Hornykiewicz O. Dopamine in the basal ganglia: its role and therapeutic implications (including the clinical use of L-DOPA). Br Med Bull 1973;29:172-8. https://doi.org/10.1093/oxfordjournals.bmb.a070990
  62. Hornykiewicz O. How L-DOPA was discovered as a drug for Parkinson's disease 40 years ago. Wien Klin Wochenschr 2001;113:855-62.
  63. Mizuno Y, Mori H, Kondo T. Parkinson's disease: from etiology to treatment. Int Med 1995;34:1045-54. https://doi.org/10.2169/internalmedicine.34.1045
  64. Sherer T, Betarbet R, Greenamyre J. Pathogenesis of Parkinson's disease. Curr Opin Investig Drugs 2001;2:657-62.
  65. Bae JR, Lee BD. Function and dysfunction of leucine-rich repeat kinase 2 (LRRK2): Parkinson's disease and beyond. BMB Rep 2015;48:243-8. https://doi.org/10.5483/BMBRep.2015.48.5.032
  66. Pollanen MS, Dickson DW, Bergeron C. Pathology and biology of the Lewy body. J Neuropathol Exp Neurol 1993;52:183-91. https://doi.org/10.1097/00005072-199305000-00001
  67. Kuzuhara S, Mori H, Izumiyama N, Yoshimura M, Ihara Y. Lewy bodies are ubiquitinated. Acta Neuropathol 1988;75:345-53. https://doi.org/10.1007/BF00687787
  68. Chung YC, Shin WH, Baek JY, Cho EJ, Baik HH, Kim SR, Won SY, Jin BK. CB2 receptor activation prevents glial-derived neurotoxic mediator production, BBB leakage and peripheral immune cell infiltration and rescues dopamine neurons in the MPTP model of Parkinson's disease. Exp Mol Med 2016;48:e205. https://doi.org/10.1038/emm.2015.100
  69. Zhu BT. CNS dopamine oxidation and catechol-O-methyltransferase: importance in the etiology, pharmacotherapy, and dietary prevention of Parkinson's disease. Int J Mol Med 2004;13:343-54.
  70. Fahn S, Cohen G. The oxidant stress hypothesis in Parkinson's disease: evidence supporting it. Ann Neurol 1992;32:804-12. https://doi.org/10.1002/ana.410320616
  71. Fahn S, Bressman SB. Should levodopa therapy for parkinsonism be started early or late? Evidence against early treatment. Can J Neurol Sci 1984;11:200-5. https://doi.org/10.1017/S0317167100046412
  72. Alam ZI, Daniel SE, Lees AJ, Marsden DC, Jenner P, Halliwell B. A generalised increase in protein carbonyls in the brain in Parkinson's but not incidental Lewy body disease. J Neurochem 1997;69:1326-9.
  73. Diamond SG, Marchkham CH, Hoehn MM, McDowell FH, Muenter MD. Multi-center study of Parkinson mortality with early versus later dopa treatment. Ann Neurol 1987;22:8-12. https://doi.org/10.1002/ana.410220105
  74. Parodi J, Ormeno D, Ochoa-de la Paz LD. Amyloid pore-channel hypothesis: effect of ethanol on aggregation state using frog oocytes for an Alzheimer's disease study. BMB Rep 2015;48:13-8. https://doi.org/10.5483/BMBRep.2015.48.1.125
  75. Hu S, Han R, Mak S, Han Y. Protection against 1-methyl-4-phenylpyridinium ion (MPPth)-induced apoptosis by water extract of ginseng (Panax ginseng CA Meyer) in SH-SY5Y cells. J Ethnopharmacol 2011;135:34-42. https://doi.org/10.1016/j.jep.2011.02.017
  76. Zhou T, Zu G, Zhang X, Wang X, Li S, Gong X, Liang Z, Zhao J. Neuroprotective effects of ginsenoside Rg1 through the Wnt/${\beta}$-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. Neuropharmacology 2016;101:480-9. https://doi.org/10.1016/j.neuropharm.2015.10.024
  77. Liu Y, Zhang RY, Zhao J, Dong Z, Feng DY, Wu R, Shi M, Zhao G. Ginsenoside Rd protects SH-SY5Y cells against 1-methyl-4-phenylpyridinium induced injury. Int J Mol Sci 2015;16:14395-408. https://doi.org/10.3390/ijms160714395
  78. Woodruff TM, Thundyil J, Tang SC, Sobey CG, Taylor SM, Arumugam TV. Pathophysiology, treatment, and animal and cellular models of human ischemic stroke. Mol Neurodegener 2011;6:11. https://doi.org/10.1186/1750-1326-6-11
  79. Dong X, Zheng L, Lu S, Yang Y. Neuroprotective effects of pretreatment of ginsenoside Rb1 on severe cerebral ischemia-induced injuries in aged mice: involvement of anti-oxidant signaling. Geriatr Gerontol Int 2017;17:338-45. http://dx.doi.org/10.1111/ggi.12699.
  80. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, et al. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152.
  81. Zhang Y, Zhou L, Zhang X, Bai J, Shi M, Zhao G. Ginsenoside-Rd attenuates TRPM7 and ASIC1a but promotes ASIC2a expression in rats after focal cerebral ischemia. Neurol Sci 2012;33:1125-31. https://doi.org/10.1007/s10072-011-0916-6
  82. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 2011;178:169-80. https://doi.org/10.1016/j.neuroscience.2011.01.007
  83. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58:391-8. https://doi.org/10.1016/j.neuint.2010.12.015
  84. He L, Chen X, Zhou M, Zhang D, Yang J, Yang M, Zhou D. Radix/rhizoma notoginseng extract (sanchitongtshu) for ischemic stroke: a randomized controlled study. Phytomedicine 2011;18:437-42. https://doi.org/10.1016/j.phymed.2010.10.004
  85. Rub U, Vonsattel JPG, Heinsen H, Korf HW. The neuropathology of Huntington's disease: classical findings, recent developments and correlation to functional neuroanatomy conclusions and outlook. Adv Anat Embryol Cell Biol 2015;217:1-46.
  86. Saudou F, Humbert S. The biology of huntingtin. Neuron 2016;89:910-26. https://doi.org/10.1016/j.neuron.2016.02.003
  87. Zuccato C, Valenza M, Cattaneo E. Molecular mechanisms and potential therapeutical targets in Huntington's disease. Physiol Rev 2010;90:905-81. https://doi.org/10.1152/physrev.00041.2009
  88. Politis M, Pavese N, Tai YF, Tabrizi SJ, Barker RA, Piccini P. Hypothalamic involvement in Huntington's disease: an in vivo PET study. Brain 2008;131:2860-9. https://doi.org/10.1093/brain/awn244
  89. Bates G, Jones L. Huntington's disease. Oxford: Oxford University Press; 2002. CIT0001.
  90. Rosenblatt A. Neuropsychiatry of Huntington's disease. Dialogues Clin Neurosci 2007;9:191-7.
  91. Gao Y, Chu SF, Li JP, Zhang Z, Yan JQ, Wen ZL, Xia CY, Mou Z, Wang ZZ, He WB. Protopanaxtriol protects against 3-nitropropionic acid-induced oxidative stress in a rat model of Huntington's disease. Acta Pharmacol Sin 2015;36:311-22. https://doi.org/10.1038/aps.2014.107
  92. Wu J, Jeong HK, Bulin SE, Kwon SW, Park JH, Bezprozvanny I. Ginsenosides protect striatal neurons in a cellular model of Huntington's disease. J Neurosci Res 2009;87:1904-12. https://doi.org/10.1002/jnr.22017
  93. Amor S, Puentes F, Baker D, Van Der Valk P. Inflammation in neurodegenerative diseases. Immunology 2010;129:154-69. https://doi.org/10.1111/j.1365-2567.2009.03225.x
  94. Kannappan R, Gupta SC, Kim JH, Reuter S, Aggarwal BB. Neuroprotection by spice-derived nutraceuticals: you are what you eat! Mol Neurobiol 2011;44:142-59. https://doi.org/10.1007/s12035-011-8168-2
  95. Marchetti B, Abbracchio MP. To be or not to be (inflamed)dis that the question in anti-inflammatory drug therapy of neurodegenerative disorders? Trends Pharmacol Sci 2005;26:517-25. https://doi.org/10.1016/j.tips.2005.08.007
  96. Andersen JK. Oxidative stress in neurodegeneration: cause or consequence? Nat Med 2004;10:18-25. https://doi.org/10.1038/nrn1434
  97. Son JH, Shim JH, Kim KH, Ha JY, Han JY. Neuronal autophagy and neurodegenerative diseases. Exp Mol Med 2012;44:89-98. https://doi.org/10.3858/emm.2012.44.2.031
  98. Ferrante RJ, Shinobu LA, Schulz JB, Matthews RT, Thomas CE, Kowall NW, Gurney ME, Beal MF. Increased 3-nitrotyrosine and oxidative damage in mice with a human copper/zinc superoxide dismutase mutation. Ann Neurol 1997;42:326-34. https://doi.org/10.1002/ana.410420309
  99. Adibhatla RM, Hatcher JF, Dempsey RJ. Phospholipase A2, hydroxyl radicals, and lipid peroxidation in transient cerebral ischemia. Antioxid Redox Signal 2003;5:647-54. https://doi.org/10.1089/152308603770310329
  100. Hall N, Carney J, Cheng M, Butterfield D. Ischemia/reperfusion-induced changes in membrane proteins and lipids of gerbil cortical synaptosomes. Neuroscience 1995;64:81-9. https://doi.org/10.1016/0306-4522(94)00385-I
  101. Won MH, Kang TC, Jeon GS, Lee JC, Kim DY, Choi EM, Lee KH, Do Choi C, Chung MH, Cho SS. Immunohistochemical detection of oxidative DNA damage induced by ischemiaereperfusion insults in gerbil hippocampus in vivo. Brain Res 1999;836:70-8. https://doi.org/10.1016/S0006-8993(99)01611-X
  102. Dexter D, Carter C, Wells F, Javoy-Agid F, Agid Y, Lees A, Jenner P, Marsden CD. Basal lipid peroxidation in substantia nigra is increased in Parkinson's disease. J Neurochem 1989;52:381-9. https://doi.org/10.1111/j.1471-4159.1989.tb09133.x
  103. Hensley K, Maidt ML, Yu Z, Sang H, Markesbery WR, Floyd RA. Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 1998;18:8126-32. https://doi.org/10.1523/JNEUROSCI.18-20-08126.1998
  104. Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer's disease brain contribute to neuronal death. Neurobiol Aging 2002;23:655-64. https://doi.org/10.1016/S0197-4580(01)00340-2
  105. Yang HY, Lee TH. Antioxidant enzymes as redox-based biomarkers: a brief review. BMB Rep 2015;48:200-8. https://doi.org/10.5483/BMBRep.2015.48.4.274
  106. Ye M, Chung HS, Lee C, Song JH, Shim I, Kim YS, Bae H. Bee venom phospholipase A2 ameliorates motor dysfunction and modulates microglia activation in Parkinson's disease alpha-synuclein transgenic mice. Exp Mol Med 2016;48:e244. https://doi.org/10.1038/emm.2016.49
  107. Radad K, Moldzio R, Rausch WD. Ginsenosides and their CNS targets. CNS Neurosci Ther 2011;17:761-8. https://doi.org/10.1111/j.1755-5949.2010.00208.x
  108. Nguyen CT, Luong TT, Kim GL, Pyo S, Rhee DK. Korean Red Ginseng inhibits apoptosis in neuroblastoma cells via estrogen receptor ${\beta}$-mediated phosphatidylinositol-3 kinase/Akt signaling. J Ginseng Res 2015;39:69-75. https://doi.org/10.1016/j.jgr.2014.06.005
  109. Kim S, Kim MS, Park K, Kim HJ, Jung SW, Nah SY, Han JS, Chung C. Hippocampus-dependent cognitive enhancement induced by systemic gintonin administration. J Ginseng Res 2016;40:55-61. https://doi.org/10.1016/j.jgr.2015.05.001
  110. Kang KS, Ham J, Kim YJ, Park JH, Cho EJ, Yamabe N. Heat-processed Panax ginseng and diabetic renal damage. J Ginseng Res 2013;37:379-88. https://doi.org/10.5142/jgr.2013.37.379
  111. Gonzalez-Burgos E, Fernandez-Moriano C, Gomez-Serranillos MP. Potential neuroprotective activity of ginseng in Parkinson's disease: a review. J Neuroimmune Pharmacol 2015;10:14-29. https://doi.org/10.1007/s11481-014-9569-6
  112. Ong WY, Farooqui T, Koh HL, Farooqui AA, Ling EA. Protective effects of ginseng on neurological disorders. Front Aging Neurosci 2015;7:129.
  113. Li N, Liu Y, Li W, Zhou L, Li Q, Wang X, He P. A UPLC/MS-based metabolomics investigation of the protective effect of ginsenosides Rg1 and Rg2 in mice with Alzheimer's disease. J Ginseng Res 2016;40:9-17. https://doi.org/10.1016/j.jgr.2015.04.006

Cited by

  1. The Effect of Fungicides on Mycelial Growth and Conidial Germination of the Ginseng Root Rot Fungus, Cylindrocarpon destructans vol.45, pp.3, 2018, https://doi.org/10.5941/myco.2017.45.3.220
  2. Antiepileptic and anti-neuroinflammatory effects of red ginseng in an intrahippocampal kainic acid model of temporal lobe epilepsy demonstrated by electroencephalography vol.35, pp.2, 2018, https://doi.org/10.12701/yujm.2018.35.2.192
  3. Bar-HRM: a reliable and fast method for species identification of ginseng (Panax ginseng, Panax notoginseng, Talinum paniculatum and Phytolacca Americana) vol.7, pp.None, 2019, https://doi.org/10.7717/peerj.7660
  4. Therapeutic potential of Panax ginseng and its constituents, ginsenosides and gintonin, in neurological and neurodegenerative disorders: a patent review vol.29, pp.1, 2018, https://doi.org/10.1080/13543776.2019.1556258
  5. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.00294
  6. Viability of Probiotic Bacteria in Yogurt Supplemented with Enzyme-Bioconverted Ginseng, Ascorbic Acid, and Yeast Extract vol.37, pp.1, 2019, https://doi.org/10.22424/jmsb.2019.37.1.57
  7. Herb Target Prediction Based on Representation Learning of Symptom related Heterogeneous Network vol.17, pp.None, 2018, https://doi.org/10.1016/j.csbj.2019.02.002
  8. The Protective Effect of Korean Red Ginseng Against Rotenone-Induced Parkinson’s Disease in Rat Model: Modulation of Nuclear Factor-κβ and Caspase-3 vol.20, pp.7, 2018, https://doi.org/10.2174/1389201020666190611122747
  9. Red Ginseng Attenuates Aβ-Induced Mitochondrial Dysfunction and Aβ-mediated Pathology in an Animal Model of Alzheimer’s Disease vol.20, pp.12, 2019, https://doi.org/10.3390/ijms20123030
  10. Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model vol.8, pp.8, 2019, https://doi.org/10.3390/antiox8080273
  11. Ginseng increases Klotho expression by FoxO3-mediated manganese superoxide dismutase in a mouse model of tacrolimus-induced renal injury vol.11, pp.15, 2018, https://doi.org/10.18632/aging.102137
  12. Neuroprotective Effects of Ginseng Phytochemicals: Recent Perspectives vol.24, pp.16, 2018, https://doi.org/10.3390/molecules24162939
  13. Chlorogenic acid‐rich Solanum melongena extract has protective potential against rotenone‐induced neurotoxicity in PC‐12 cells vol.43, pp.11, 2018, https://doi.org/10.1111/jfbc.12999
  14. Current Status and Problem-Solving Strategies for Ginseng Industry vol.25, pp.12, 2018, https://doi.org/10.1007/s11655-019-3046-2
  15. Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots vol.14, pp.12, 2019, https://doi.org/10.1371/journal.pone.0226168
  16. Red Ginseng Inhibits Tau Aggregation and Promotes Tau Dissociation In Vitro vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/7829842
  17. Anticancer Effect of Mountain Ginseng on Human Breast Cancer: Comparison with Farm-Cultivated Ginseng vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/2584783
  18. Ginsenoside Rg5/Rk1 ameliorated sleep via regulating the GABAergic/serotoninergic signaling pathway in a rodent model vol.11, pp.2, 2018, https://doi.org/10.1039/c9fo02248a
  19. 인삼 품종별 뿌리 추출물의 NMDA 수용체 길항 효과 및 진세노사이드 함량 vol.28, pp.1, 2020, https://doi.org/10.7783/kjmcs.2020.28.1.9
  20. Born to Protect: Leveraging BDNF Against Cognitive Deficit in Alzheimer’s Disease vol.34, pp.3, 2018, https://doi.org/10.1007/s40263-020-00705-9
  21. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2018, https://doi.org/10.3892/mmr.2020.10935
  22. Ginsenoside Compound K: Insights into Recent Studies on Pharmacokinetics and Health-Promoting Activities vol.10, pp.7, 2018, https://doi.org/10.3390/biom10071028
  23. Vitrification and proteomic analysis of embryogenic callus of Panax ginseng C. A. Meyer vol.57, pp.1, 2018, https://doi.org/10.1007/s11627-020-10117-5
  24. Plasma and intracerebral pharmacokinetics and pharmacodynamics modeling for the acetylcholine releasing effect of ginsenoside Rg1 in mPFC of Aβ model rats vol.23, pp.3, 2018, https://doi.org/10.1080/10286020.2020.1803289
  25. Protocol Optimization of Proteomic Analysis of Korean Ginseng (Panax ginseng Meyer) vol.8, pp.4, 2018, https://doi.org/10.3390/separations8040053
  26. Differentiation-promoting and Protective Effects of the Fractions of Various Ginseng Species in C2C12 Cells vol.29, pp.2, 2018, https://doi.org/10.7783/kjmcs.2021.29.2.135
  27. Transcriptome-Wide Analysis for Ginsenoside Rb3 Synthesis-Related Genes and Study on the Expression of Methyl Jasmonate Treatment in Panax ginseng vol.11, pp.5, 2018, https://doi.org/10.3390/life11050387
  28. Anti‑angiogenic effect of mountain ginseng in vitro and in vivo: Comparison with farm‑cultivated ginseng vol.24, pp.2, 2018, https://doi.org/10.3892/mmr.2021.12254
  29. Inhibition of Angiotensin-I Converting Enzyme by Ginsenosides: Structure-Activity Relationships and Inhibitory Mechanism vol.69, pp.21, 2018, https://doi.org/10.1021/acs.jafc.1c01231
  30. Ginsenoside extract from ginseng extends lifespan and health span in Caenorhabditis elegans vol.12, pp.15, 2018, https://doi.org/10.1039/d1fo00576f
  31. Pharmacological properties of ginsenosides in inflammation-derived cancers vol.476, pp.9, 2021, https://doi.org/10.1007/s11010-021-04162-w
  32. Ginsenoside Rg1 exerts neuroprotective effects in 3-nitropronpionic acid-induced mouse model of Huntington’s disease via suppressing MAPKs and NF-κB pathways in the striatum vol.42, pp.9, 2018, https://doi.org/10.1038/s41401-020-00558-4
  33. Wound Healing Effect of Gintonin Involves Lysophosphatidic Acid Receptor/Vascular Endothelial Growth Factor Signaling Pathway in Keratinocytes vol.22, pp.18, 2021, https://doi.org/10.3390/ijms221810155
  34. Plant Exosomes As Novel Nanoplatforms for MicroRNA Transfer Stimulate Neural Differentiation of Stem Cells In Vitro and In Vivo vol.21, pp.19, 2018, https://doi.org/10.1021/acs.nanolett.1c02530
  35. Nutraceuticals in mental diseases - Bridging the gap between traditional use and modern pharmacology vol.61, pp.None, 2018, https://doi.org/10.1016/j.coph.2021.08.017
  36. Chinese nutraceuticals and physical activity; their role in neurodegenerative tauopathies vol.16, pp.None, 2021, https://doi.org/10.1186/s13020-020-00418-7
  37. Characterization of Novel Lactobacillus paracasei HY7017 Capable of Improving Physiological Properties and Immune Enhancing Effects Using Red Ginseng Extract vol.7, pp.4, 2021, https://doi.org/10.3390/fermentation7040238
  38. Glycogen-based pH and redox sensitive nanoparticles with ginsenoside Rh2 for effective treatment of ulcerative colitis vol.280, pp.None, 2018, https://doi.org/10.1016/j.biomaterials.2021.121077