DOI QR코드

DOI QR Code

Gut microbiota-mediated pharmacokinetics of ginseng saponins

  • Kim, Dong-Hyun (Department of Life and Nanopharmaceutical Sciences and Department of Pharmacy, College of Pharmacy, Kyung Hee University)
  • Received : 2016.10.21
  • Accepted : 2017.04.18
  • Published : 2018.07.15

Abstract

Orally administered ginsengs come in contact with the gut microbiota, and their hydrophilic constituents, such as ginsenosides, are metabolized to hydrophobic compounds by gastric juice and gut microbiota: protopanxadiol-type ginsenosides are mainly transformed into compound K and ginsenoside Rh2; protopanaxatriol-type ginsenosides to ginsenoside Rh1 and protopanaxatriol, and ocotillol-type ginsenosides to ocotillol. Although this metabolizing activity varies between individuals, the metabolism of ginsenosides to compound K by gut microbiota in individuals treated with ginseng is proportional to the area under the blood concentration curve for compound K in their blood samples. These metabolites such as compound K exhibit potent pharmacological effects, such as antitumor, anti-inflammatory, antidiabetic, antiallergic, and neuroprotective effects compared with the parent ginsenosides, such as Rb1, Rb2, and Re. Therefore, to monitor the potent pharmacological effects of ginseng, a novel probiotic fermentation technology has been developed to produce absorbable and bioactive metabolites. Based on these findings, it is concluded that gut microbiota play an important role in the pharmacological action of orally administered ginseng, and probiotics that can replace gut microbiota can be used in the development of beneficial and bioactive ginsengs.

Keywords

References

  1. Kim DH. Chemical diversity of Panax ginseng, Panax quinquefolius, and Panax notoginseng. J Ginseng Res 2012;36:1-15. https://doi.org/10.5142/jgr.2012.36.1.1
  2. Mikov M. The metabolism of drugs by the gut flora. Eur J Drug Metab Pharmacokinet 1994;19:201-7. https://doi.org/10.1007/BF03188922
  3. Sousa T, Paterson R, Moore V, Carlsson A, Abrahamsson B, Basit AW. The gastrointestinal microbiota as a site for the biotransformation of drugs. Int J Pharm 2008;363:1-25. https://doi.org/10.1016/j.ijpharm.2008.07.009
  4. Kim DH. The possible role of intestinal microflora in pharmacological activities of ginseng. Int Biomed Pharmaceut Sci 2012;6:90-6.
  5. Kobashi K, Akao T. Relation of intestinal bacteria to pharmacological effects of glycosides. Biosci Microflora 1987;16:1-7.
  6. Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatr Suppl 2003;91:48-55.
  7. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010;107:11971-5. https://doi.org/10.1073/pnas.1002601107
  8. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 2005;308:1635-8. https://doi.org/10.1126/science.1110591
  9. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 2012;489:220-30. https://doi.org/10.1038/nature11550
  10. Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet 2012;13:260-70. https://doi.org/10.1038/nrg3182
  11. Li CP, Li RC. An introductory note to ginseng. Am J Chin Med 1973;1:249-61. https://doi.org/10.1142/S0192415X73000279
  12. Banskota AH, Tezuka Y, Le Tran Q, Kadota S. Chemical constituents and biological activities of Vietnamese medicinal plants. Curr Top Med Chem 2003;3:227-48. https://doi.org/10.2174/1568026033392516
  13. Chen CF, Chiou WF, Zhang JT. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin 2008;29:1103-8. https://doi.org/10.1111/j.1745-7254.2008.00868.x
  14. Ng TB. Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 2006;58:1007-19. https://doi.org/10.1211/jpp.58.8.0001
  15. Garriques SS. On panaquilon, a new vegetable substance. Ann Chem Pharm 1954;90:231-4.
  16. Shibata S, Tanaka O, Nagai M, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs. XII. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull 1963;11:762-5. https://doi.org/10.1248/cpb.11.762
  17. Shibata S, Ando T, Tanaka O, Meguro Y, Soma K, Iida Y. Saponins and sapogenins of Panax ginseng C.A. Meyer and some other Panax spp. Yakugaku Zasshi 1965;85:753-5 [In Japanese].
  18. Shibata S, Tanaka O, Soma K, Ando T, Iida Y, Nakamura H. Studies on saponins and sapogenis of ginseng. The structure of panaxatriol. Tetrahedron Lett 1965;42:207-13.
  19. Baek SH, Bae ON, Park JH. Recent methodology in ginseng analysis. J Ginseng Res 2012;36:119-34. https://doi.org/10.5142/jgr.2012.36.2.119
  20. Ru W, Wang D, Xu Y, He X, Sun YE, Qian L, Zhou X, Qin Y. Chemical constituents and bioactivities of Panax ginseng (C.A. Mey.). Drug Discov Ther 2015;9:23-32. https://doi.org/10.5582/ddt.2015.01004
  21. Shibata S, Fujita M, Itokawa H, Tanaka O. Studies on the constituents of Japanese and Chinese crude drugs. XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull (Tokyo) 1963;11:759-61. https://doi.org/10.1248/cpb.11.759
  22. Kitagawa I, Taniyama T, Shibuya H, Noda T, Yoshikawa M. Chemical studies on crude drug processing. V. On the constituents of ginseng radix rubra (2): Comparison of the constituents of white ginseng and red ginseng prepared from the same Panax ginseng root. Yakugaku Zasshi 1987;107:495-505 [In Japanese]. https://doi.org/10.1248/yakushi1947.107.7_495
  23. Kitagawa I, Yoshikawa M, Yoshihara M, Hayashi T, Taniyama T. Chemical studies on crude drug precession. I. On the constituents of ginseng radix rubra (1). Yakugaku Zasshi 1983;103:612-22. https://doi.org/10.1248/yakushi1947.103.6_612
  24. Ruan CC, Liu Z, Li X, Liu X, Wang LJ, Pan HY, Zheng YN, Sun GZ, Zhang YS, Zhang LX. Isolation and characterization of a new ginsenoside from the fresh root of Panax ginseng. Molecules 2010;15:2319-25. https://doi.org/10.3390/molecules15042319
  25. Zhu GY, Li YW, Hau DK, Jiang ZH, Yu ZL, Fong WF. Protopanaxatriol-type ginsenosides fromthe root of Panax ginseng. Agric Food Chem 2011;59:200-5. https://doi.org/10.1021/jf1037932
  26. Besso H, Kasai R, Saruwatari Y, Fuwa T, Tanaka O. Ginsenoside Ra1 and ginsenoside Ra2, new dammarane-saponins of ginseng roots. Chem Pharm Bull 1982;30:2380-5. https://doi.org/10.1248/cpb.30.2380
  27. Kasai R, Besso H, Tanaka O, Saruwatari YI, Fuwa T. Saponins of red ginseng. Chem Pharm Bull 1983;31:2120-5. https://doi.org/10.1248/cpb.31.2120
  28. Ryu JH, Park TH, Kim DH, Sohn JM, Kim HM, Park JH. A genuine dammarane glycoside, (20E)-ginsenoside F4 from Korean red ginseng. Arch Pharm Res 1996;19:335-6. https://doi.org/10.1007/BF02976251
  29. Baek NI, Kim DS, Lee YH, Park JD, Lee CB, Kim SI. Ginsenoside Rh4, a genuine dammarane glycoside from Korean Red Ginseng. Planta Med 1996;62:86-7. https://doi.org/10.1055/s-2006-957816
  30. Anufriev VP, Malinovskaya GV, Denisenko VA, Uvarova NI, Elyakov GB, Kim SI, Baek NI. Synthesis of ginsenoside Rg3, a minor constituent of ginseng radix. Carbohydr Res 1997;304:179-82. https://doi.org/10.1016/S0008-6215(97)00217-6
  31. Park JD, Lee YH, Kim SI. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 1998;21:615-7. https://doi.org/10.1007/BF02975384
  32. Bae EA, Han MJ, Kim EJ, Kim DH. Transformation of ginseng saponins to ginsenoside Rh2 by acids and human intestinal bacteria and biological activities of their transformants. Arch Pharm Res 2004;27:61-7. https://doi.org/10.1007/BF02980048
  33. Han BH, Park MH, Han YN, Woo LK, Sankawa U, Yahara S, Tanaka O. Degradation of ginseng saponins under mild acidic conditions. Planta Med 1982;44:146-9. https://doi.org/10.1055/s-2007-971425
  34. Kown SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-9. https://doi.org/10.1016/S0021-9673(01)00869-X
  35. Taniyasu S, Tanaka O, Yang TR, Zhou J. Dammarane saponins of flower buds of Panax notoginseng (sanchi-ginseng). Planta Med 1982;44:124-5. https://doi.org/10.1055/s-2007-971420
  36. Yu HS, Zhang LJ, Song XB, Liu YX, Zhang J, Cao M, Kang LP, Kang TG, Ma BP. Chemical constituents from processed rhizomes of Panax notoginseng. Zhongguo Zhong Yao Za Zhi 2013;38:3910-7 [In Chinese].
  37. Zeng J, Cui XM, Zhou JM, Jiang ZY, Zhang XM, Chen JJ. Studies on chemical constituents from rhizomes of Panax notoginseng. Zhong Yao Cai 2007;30:1388-91.
  38. Zhou J, Wu MZ, Taniyasu S, Besso H, Tanaka O, Saruwatari Y, Fuwa T. Dammarane-saponins of sanchi-ginseng, roots of Panax notoginseng (BURK.) F.H. CHEN (Araliaceae): structures of new saponins, notoginsenosides-R1 and -R2, and identification of ginsenosides-$Rg_{2}$ and $-Rh_{1}$. Chem Pharm Bull 1981;29:2844-50. https://doi.org/10.1248/cpb.29.2844
  39. Zhao P, Liu YQ, Yang CR. Minor dammarane saponins from Panax notoginseng. Phytochemistry 1996;41:1419-22. https://doi.org/10.1016/0031-9422(95)00785-7
  40. Nguyen MD, Nguyen TN, Kasai R, Ito A, Yamasaki K, Tanaka O. Saponins from Vietnamese ginseng, Panax vietnamensis Ha et Grushv. Collected in central Vietnam. I. Chem Pharm Bull (Tokyo) 1993;41:2010-4. https://doi.org/10.1248/cpb.41.2010
  41. Nguyen MD, Kasai R, Ohtani K, Ito A, Nguyen TN, Yamasaki K, Tanaka O. Saponins from Vietnamese ginseng, Panax vietnamensis HA et Grushv. Collected in central Vietnam. II. Chem Pharm Bull 1994;42:634-40. https://doi.org/10.1248/cpb.42.634
  42. Duc NM, Kasai R, Ohtani K, Ito A, Nham NT, Yamasaki K, Tanaka O. Saponins from Vietnamese ginseng, Panax vietnamensis Ha et Grushv. collected in central Vietnam. III. Chem Pharm Bull (Tokyo) 1994;42:115-22. https://doi.org/10.1248/cpb.42.115
  43. Tawab MA, Bahr U, Karas M, Wurglics M, Schubert-Zsilavecz M. Degradation of ginsenosides in humans after oral administration. Drug Metab Disp 2003;31:1065-71. https://doi.org/10.1124/dmd.31.8.1065
  44. Akao T, Kida H, Kanaoka M, Hattori M, Kobashi K. Intestinal bacterial hydrolysis is required for the appearance of compound K in rat plasma after oral administration of ginsenoside Rb1 from Panax ginseng. J Pharm Pharmacol 1998;50:1155-60. https://doi.org/10.1111/j.2042-7158.1998.tb03327.x
  45. Akao T, Kanaoka M, Kobashi K. Appearance of compound K, a major metabolite of ginsenoside Rb1 by intestinal bacteria, in rat plasma after oral administration-measurement of compound K by enzyme immunoassay. Biol Pharm Bull 1998;21:245-9. https://doi.org/10.1248/bpb.21.245
  46. Shibata S. Chemistry and cancer preventing activities of ginseng saponins and some related triterpenoid compounds. J Kor Med Sci 2001;16(Suppl.):S28-37. https://doi.org/10.3346/jkms.2001.16.S.S28
  47. Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. Effect of a soluble prebiotic fiber, NUTRIOSE, on the absorption of ginsenoside Rd in rats orally administered ginseng. J Ginseng Res 2014;38:203-7. https://doi.org/10.1016/j.jgr.2014.03.003
  48. Kim KA, Yoo HH, Gu W, Yu DH, Jin MJ, Choi HL, Yuan K, Guerin-Deremaux L, Kim DH. A prebiotic fiber increases the formation and subsequent absorption of compound K following oral administration of ginseng in rats. J Ginseng Res 2015;39:183-7. https://doi.org/10.1016/j.jgr.2014.11.002
  49. Lee J, Lee E, Kim DH, Lee J, Yoo J, Koh B. Studies on absorption, distribution and metabolism of ginseng in humans after oral administration. J Ethnopharmacol 2009;122:143-8. https://doi.org/10.1016/j.jep.2008.12.012
  50. Hasegawa H, Sung JH, Matsumiya S, Uchiyama M. Main ginseng metabolites formed by intestinal bacteria. Planta Med 1996;62:453-5. https://doi.org/10.1055/s-2006-957938
  51. Karikura M, Miyase T, Tanizawa H, Takino Y, Taniyama T, Hayashi T. Studies on absorption, distribution, excretion and metabolism of ginseng saponins. V. The decomposition products of ginsenoside Rb2 in the large intestine of rats. Chem Pharm Bull 1990;38:2859-61. https://doi.org/10.1248/cpb.38.2859
  52. Odani T, Tanizawa H, Takino Y. Studies on the absorption, distribution, excretion and metabolism of ginseng saponins. II. The absorption, distribution and excretion of ginsenoside Rg1 in the rat. Chem Pharm Bull 1983;31:292-8. https://doi.org/10.1248/cpb.31.292
  53. Strombom J, Sandberg F, Dencker L. Studies on absorption and distribution of ginsenoside Rg1 by whole-body autoradiobiography and chromatography. Acta Pharmaceut Suecica 1985;22:113-22.
  54. Park EK, Shin YW, Lee HU, Kim SS, Lee YC, Lee BY, Kim DH. Inhibitory effect of ginsenoside Rb1 and compound K on NO and prostaglandin E2 biosyntheses of RAW264.7 cells induced by lipopolysaccharide. Biol Pharm Bull 2005;28:652-6. https://doi.org/10.1248/bpb.28.652
  55. Kato H, Shimada F, Yano S, Kanaoka M. Determination of ginsenoside Rb1 in plasma of human after intake of red ginseng powder. In: Abstract of papers, 11th Symposium of the Medical Society for Red Ginseng Research, Kobe, Japan; 1990. p. 36 [abstract].
  56. Scalbert A, Williamson G. Dietary intake and bioavailability of polyphenols. J Nutri 2000;130:2073S-85S. https://doi.org/10.1093/jn/130.8.2073S
  57. Bae EA, Park SY, Kim DH. Constitutive beta-glucosidases hydrolyzing ginsenoside Rb1 and Rb2 from human intestinal bacteria. Biol Pharm Bull 2000;23:1481-5. https://doi.org/10.1248/bpb.23.1481
  58. Bae EA, Han MJ, Choo MK, Park SY, Kim DH. Metabolism of 20(S)- and 20(R)-ginsenoside Rg3 by human intestinal bacteria and its relation to in vitro biological activities. Biol Pharm Bull 2002;25:58-63. https://doi.org/10.1248/bpb.25.58
  59. Bae EA, Choo MK, Park EK, Park SY, Shin HY, Kim DH. Metabolism of ginsenoside Rc and its related antiallergic activity. Biol Pharm Bull 2002;25:743-7. https://doi.org/10.1248/bpb.25.743
  60. Kim DH. Metabolism of ginsenosides to bioactive compounds by intestinal microflora and its industrial application. J Ginseng Res 2009;33:165-76. https://doi.org/10.5142/JGR.2009.33.3.165
  61. Park SY, Bae EA, Sung JH, Lee SK, Kim DH. Purification and characterization of ginsenoside Rb1-metabolizing beta-glucosidase from Fusobacterium K-60, a human intestinal anaerobic bacterium. Biosci Biotechnol Biochem 2001;65:1163-9. https://doi.org/10.1271/bbb.65.1163
  62. Shin HY, Lee JH, Lee JY, Han YO, Han MJ, Kim DH. Purification and characterization of ginsenoside Ra-hydrolyzing beta-D-xylosidase from Bifidobacterium breve K-110, a human intestinal anaerobic bacterium. Biol Pharm Bull 2003;26:1170-3. https://doi.org/10.1248/bpb.26.1170
  63. Bae EA, Shin JE, Kim DH. Metabolism of ginsenoside Re by human intestinal microflora and its estrogenic effect. Biol Pharm Bull 2005;28:1903-8. https://doi.org/10.1248/bpb.28.1903
  64. Jeong JJ, Van Le TH, Lee SY, Eun SH, Nguyen MD, Park JH, Kim DH. Anti-inflammatory effects of vina-ginsenoside R2 and majonoside R2 isolated from Panax vietnamensis and their metabolites in lipopolysaccharide-stimulated macrophages. Int Immunopharmacol 2015;28:700-6. https://doi.org/10.1016/j.intimp.2015.07.025
  65. Lee SY, Jeong JJ, Le TH, Eun SH, Nguyen MD, Park JH, Kim DH. Ocotillol, a majonoside R2 metabolite, ameliorates 2,4,6-trinitrobenzenesulfonic acid-induced colitis in mice by restoring the balance of Th17/Treg cells. J Agric Food Chem 2015;63:7024-31. https://doi.org/10.1021/acs.jafc.5b02183
  66. Wakabayashi C, Hasegawa H, Murata J, Saiki I. In vivo antimetastatic action of ginseng protopanaxadiol saponins is based on their intestinal bacterial metabolites after oral administration. Oncol Res 1998;9:411-7.
  67. Hasegawa H, Lee KS, Nagaoka T, Tezuka Y, Uchiyama M, Kadota S, Saiki I. Pharmacokinetics of ginsenoside deglycosylated by intestinal bacteria and its transformation to biologically active fatty acid esters. Biol Pharm Bull 2000;23:298-304. https://doi.org/10.1248/bpb.23.298
  68. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  69. Kennedy DO, Scholey AB. Ginseng: potential for the enhancement of cognitive performance and mood. Pharmacol Biochem Behav 2003;75:687-700. https://doi.org/10.1016/S0091-3057(03)00126-6
  70. Scaglione F, Ferrara F, Dugnani S, Falchi M, Santoro G, Fraschini F. Immunomodulatory effects of two extracts of Panax ginseng C.A. Meyer. Drug Exp Clin Res 1990;16:537-42.
  71. Singh VK, Agarwhal SS, Gupta BM. Immunomodulatory activity of Panax ginseng extract. Planta Med 1984;50:462-5. https://doi.org/10.1055/s-2007-969773
  72. Matsuda H, Namba K, Fukuda S, Tani T, Kubo M. Pharmacological study on Panax ginseng C.A. Meyer. IV. Effects of red ginseng on experimental disseminated intravascular coagulation. (3). Effect of ginsenoside-Ro on the blood coagulative and fibrinolytic system. Chem Pharm Bull 1986;34:2100-4. https://doi.org/10.1248/cpb.34.2100
  73. Yokozawa T, Kobayashi T, Oura H, Kawashima Y. Studies on the mechanism of the hypoglycemic activity of ginsenoside-Rb2 in streptozotocin-diabetic rats. Chem Pharm Bull 1985;33:869-72. https://doi.org/10.1248/cpb.33.869
  74. Xie JT, Mehendale SR, Li X, Quigg R, Wang X, Wang CZ, Wu JA, Aung HH, Rue PA, Bell GI, et al. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim Biophys Acta 2005;1740:319-25. https://doi.org/10.1016/j.bbadis.2004.10.010
  75. Chang YS, Seo EK, Gyllenhaal C, Block KI. Panax ginseng: a role in cancer therapy? Integr Cancer Therap 2003;2:13-33. https://doi.org/10.1177/1534735403251167
  76. Helms S. Cancer prevention and therapeutics: Panax ginseng. Altern Med Rev 2004;9:259-74.
  77. Choo MK, Park EK, Han MJ, Kim DH. Antiallergic activity of ginseng and its ginsenosides. Planta Med 2003;69:518-22. https://doi.org/10.1055/s-2003-40653
  78. Park EK, Choo MK, Kim EJ, Han MJ, Kim DH. Antiallergic activity of ginsenoside Rh2. Biol Pharm Bull 2003;26:1581-4. https://doi.org/10.1248/bpb.26.1581
  79. Park EK, Choo MK, Han MJ, Kim DH. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 2004;133:113-20. https://doi.org/10.1159/000076383
  80. Kim ND, Kang SY, Kim MJ, Park JH, Schini-Kerth VB. The ginsenoside Rg3 evokes endothelium-independent relaxation in rat aortic rings: role of $K^{+}$ channels. Eur J Pharmacol 1999;367:51-7. https://doi.org/10.1016/S0014-2999(98)00899-1
  81. Park EK, Choo MK, Oh JK, Ryu JH, Kim DH. Ginsenoside Rh2 reduces ischemic brain injury in rats. Biol Pharm Bull 2004;27:433-6. https://doi.org/10.1248/bpb.27.433
  82. Shieh PC, Tsao CW, Li JS, Wu HT, Wen YJ, Kou DH, Cheng JT. Role of pituitary adenylate cyclase-activating polypeptide (PACAP) in the action of ginsenoside Rh2 against beta-amyloid-induced inhibition of rat brain astrocytes. Neurosci Lett 2008;434:1-5. https://doi.org/10.1016/j.neulet.2007.12.032
  83. Su X, Pei Z, Hu S. Ginsenoside Re as an adjuvant to enhance the immune response to the inactivated rabies virus vaccine in mice. Int Immunopharmacol 2014;20:283-9. https://doi.org/10.1016/j.intimp.2014.03.008
  84. Lee EJ, Ko E, Lee J, Rho S, Ko S, Shin MK, Min BI, Hong MC, Kim SY, Bae H. Ginsenoside Rg1 enhances CD4(+) T-cell activities and modulates Th1/Th2 differentiation. Int Immunopharmacol 2004;4:235-44. https://doi.org/10.1016/j.intimp.2003.12.007
  85. Lee SJ, Ko WG, Kim JH, Sung JH, Moon CK, Lee BH. Induction of apoptosis by a novel intestinal metabolite of ginseng saponin via cytochrome c-mediated activation of caspase-3 protease. Biochem Pharmacol 2000;60:677-85. https://doi.org/10.1016/S0006-2952(00)00362-2
  86. Tatsuka M, Maeda M, Ota T. Anticarcinogenic effect and enhancement of metastatic potential of BALB/c 3T3 cells by ginsenoside Rh(2). Jpn J Cancer Res 2001;92:1184-9. https://doi.org/10.1111/j.1349-7006.2001.tb02138.x
  87. Shin YW, Kim DH. Antipruritic effect of ginsenoside rb1 and compound k in scratching behavior mouse models. J Pharm Sci 2005;99:83-8. https://doi.org/10.1254/jphs.FP0050260
  88. Shin YW, Bae EA, Kim SS, Lee YC, Kim DH. Effect of ginsenoside Rb1 and compound K in chronic oxazolone-induced mouse dermatitis. Int Immunopharmacol 2005;5:1183-91. https://doi.org/10.1016/j.intimp.2005.02.016
  89. Choo MK, Sakurai H, Kim DH, Saiki I. A ginseng saponin metabolite suppresses tumor necrosis factor-alpha-promoted metastasis by suppressing nuclear factor-kappa B signaling in murine colon cancer cells. Oncol Rep 2008;19:595-600.
  90. Cui JF, Bjorkhem I, Eneroth P. Gas chromatographic-mass spectrometric determination of 20(S)-protopanaxadiol and 20(S)-protopanaxatriol for study on human urinary excretion of ginsenosides after ingestion of ginseng preparations. J Chromatogr B Biomed Sci Appl 1997;689:349-55. https://doi.org/10.1016/S0378-4347(96)00304-0
  91. Bae EA, Hyun YJ, Choo MK, Oh JK, Ryu JH, Kim DH. Protective effect of fermented red ginseng on a transient focal ischemic rats. Arch Pharm Res 2004;27:1136-40. https://doi.org/10.1007/BF02975119
  92. Kim KA, Jung IH, Park SH, Ahn YT, Huh CS, Kim DH. Comparative analysis of the gut microbiota in people with different levels of ginsenoside Rb1 degradation to compound K. PLoS One 2013;8:e62409. https://doi.org/10.1371/journal.pone.0062409
  93. Lee DS, Kim YS, Ko CN, Cho KH, Bae HS, Lee KS, Kim JJ, Park EK, Kim DH. Fecal metabolic activities of herbal components to bioactive compounds. Arch Pharm Res 2002;25:165-9. https://doi.org/10.1007/BF02976558
  94. Yim JS, Kim YS, Moon SK, Cho KH, Bae HS, Kim JJ, Park EK, Kim DH. Metabolic activities of ginsenoside Rb1, baicalin, glycyrrhizin and geniposide to their bioactive compounds by human intestinal microflora. Biol Pharm Bull 2004;27:1580-3. https://doi.org/10.1248/bpb.27.1580
  95. Choi JR, Hong SW, Kim Y, Jang SE, Kim NJ, Han MJ, Kim DH. Metabolic activities of ginseng and its constituents, ginsenoside rb1 and rg1, by human intestinal microflora. J Ginseng Res 2011;35:301-7. https://doi.org/10.5142/jgr.2011.35.3.301
  96. Kim DH. Herbal medicines are activated by intestinal microflora. Nat Prod Sci 2002;8:35-43.
  97. Kim DH. Gut microbiota-mediated drug-antibiotic interactions. Drug Metab Dispos 2015;43:1581-9. https://doi.org/10.1124/dmd.115.063867
  98. Tamura G, Gold C, Ferro-Luzzi A, Ames BN. Fecalase: a model for activation of dietary glycosides to mutagens by intestinal flora. Proc Natl Acad Sci USA 1980;77:4961-5. https://doi.org/10.1073/pnas.77.8.4961
  99. Kobashi K, Nakata H, Takebe H, Terasawa K. Relation of intestinal microflora to Syo. Wakan-iyaku-kaishi 1984;1:166-7.
  100. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol 2007;17:1127-33.

Cited by

  1. American Ginseng (Panax quinquefolium L.) as a Source of Bioactive Phytochemicals with Pro-Health Properties vol.11, pp.5, 2018, https://doi.org/10.3390/nu11051041
  2. Detection of 13 Ginsenosides (Rb1, Rb2, Rc, Rd, Re, Rf, Rg1, Rg3, Rh2, F1, Compound K, 20(S)-Protopanaxadiol, and 20(S)-Protopanaxatriol) in Human Plasma and Application of the Analytical Method to Hu vol.24, pp.14, 2019, https://doi.org/10.3390/molecules24142618
  3. Interactions of ginseng with therapeutic drugs vol.42, pp.10, 2018, https://doi.org/10.1007/s12272-019-01184-3
  4. Development of Lactobacillus kimchicus DCY51T-mediated gold nanoparticles for delivery of ginsenoside compound K: in vitro photothermal effects and apoptosis detection in cancer cells vol.47, pp.1, 2019, https://doi.org/10.1080/21691401.2018.1541900
  5. Panax notoginseng saponins modulate the gut microbiota to promote thermogenesis and beige adipocyte reconstruction via leptin-mediated AMPKα/STAT3 signaling in diet-induced obesity vol.10, pp.24, 2020, https://doi.org/10.7150/thno.47746
  6. In Vitro Colonic Fermentation of Saponin-Rich Extracts from Quinoa, Lentil, and Fenugreek. Effect on Sapogenins Yield and Human Gut Microbiota vol.68, pp.1, 2018, https://doi.org/10.1021/acs.jafc.9b05659
  7. Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats vol.11, pp.None, 2018, https://doi.org/10.3389/fmicb.2020.00597
  8. Pharmacokinetics and Intestinal Metabolism of Compound K in Rats and Mice vol.12, pp.2, 2020, https://doi.org/10.3390/pharmaceutics12020129
  9. Ginsenoside Rd Ameliorates High Fat Diet‐Induced Obesity by Enhancing Adaptive Thermogenesis in a cAMP‐Dependent Manner vol.28, pp.4, 2018, https://doi.org/10.1002/oby.22761
  10. Effects of Red and Fermented Ginseng and Ginsenosides on Allergic Disorders vol.10, pp.4, 2018, https://doi.org/10.3390/biom10040634
  11. Protective Effect of Ocotillol, the Derivate of Ocotillol-Type Saponins in Panax Genus, against Acetic Acid-Induced Gastric Ulcer in Rats Based on Untargeted Metabolomics vol.21, pp.7, 2020, https://doi.org/10.3390/ijms21072577
  12. Synthesis and Structure-Activity Relationship of Pyxinol Derivatives as Novel Anti-Inflammatory Agents vol.11, pp.4, 2018, https://doi.org/10.1021/acsmedchemlett.9b00562
  13. Inhibition of Programmed Death Receptor-1/Programmed Death Ligand-1 Interactions by Ginsenoside Metabolites vol.25, pp.9, 2018, https://doi.org/10.3390/molecules25092068
  14. In Vivo Metabolic Profiles of Panax notoginseng Saponins Mediated by Gut Microbiota in Rats vol.68, pp.25, 2018, https://doi.org/10.1021/acs.jafc.0c01857
  15. Human Gut Microbiota Metabolism of Dietary Sesquiterpene Lactones: Untargeted Metabolomics Study of Lactucopicrin and Lactucin Conversion In Vitro and In Vivo vol.64, pp.21, 2018, https://doi.org/10.1002/mnfr.202000619
  16. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2018, https://doi.org/10.1002/med.21743
  17. Evolution of the adaptogenic concept from traditional use to medical systems: Pharmacology of stress‐ and aging‐related diseases vol.41, pp.1, 2018, https://doi.org/10.1002/med.21743
  18. The Impact of Gut Microbiome on the Pharmacokinetics of Ginsenosides Rd and Rg3 in Mice after Oral Administration of Red Ginseng vol.49, pp.8, 2021, https://doi.org/10.1142/s0192415x21500890
  19. Strategies for Remodeling the Tumor Microenvironment Using Active Ingredients of Ginseng-A Promising Approach for Cancer Therapy vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.797634
  20. Protective effects of ginsenoside-Rg2 and -Rh1 on liver function through inhibiting TAK1 and STAT3-mediated inflammatory activity and Nrf2/ARE-mediated antioxidant signaling pathway vol.44, pp.2, 2018, https://doi.org/10.1007/s12272-020-01304-4
  21. Neuroprotective Effect and Antioxidant Potency of Fermented Cultured Wild Ginseng Root Extracts of Panax ginseng C.A. Meyer in Mice vol.26, pp.10, 2021, https://doi.org/10.3390/molecules26103001
  22. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial vol.12, pp.2, 2018, https://doi.org/10.1007/s13167-021-00243-4
  23. Ginsenoside Rh1 Exerts Neuroprotective Effects by Activating the PI3K/Akt Pathway in Amyloid-β Induced SH-SY5Y Cells vol.11, pp.12, 2021, https://doi.org/10.3390/app11125654
  24. Potential Modulatory Microbiome Therapies for Prevention or Treatment of Inflammatory Bowel Diseases vol.14, pp.6, 2021, https://doi.org/10.3390/ph14060506
  25. Physical, chemical, and biological characterization of ginsenoside F1 incorporated in nanostructured lipid carrier vol.45, pp.8, 2021, https://doi.org/10.1111/jfbc.13860
  26. Effect of Lactic Acid Bacteria on the Pharmacokinetics and Metabolism of Ginsenosides in Mice vol.13, pp.9, 2018, https://doi.org/10.3390/pharmaceutics13091496
  27. Growth stimulation of Bifidobacterium from human colon using daikenchuto in an in vitro model of human intestinal microbiota vol.11, pp.1, 2018, https://doi.org/10.1038/s41598-021-84167-z
  28. Structural analogues in herbal medicine ginseng hit a shared target to achieve cumulative bioactivity vol.4, pp.1, 2018, https://doi.org/10.1038/s42003-021-02084-3
  29. Effects of Platycodon grandiflorum on Gut Microbiome and Immune System of Immunosuppressed Mouse vol.11, pp.12, 2018, https://doi.org/10.3390/metabo11120817