DOI QR코드

DOI QR Code

Pharmacological and medical applications of Panax ginseng and ginsenosides: a review for use in cardiovascular diseases

  • Kim, Jong-Hoon (Department of Physiology, College of Veterinary Medicine, Chonbuk National University)
  • Received : 2017.10.11
  • Accepted : 2017.10.16
  • Published : 2018.07.15

Abstract

Panax ginseng, also called Asian or Korean ginseng, has long been traditionally used in Korea and China to treat various diseases. The major active ingredients of P. ginseng are ginsenosides, which have been shown to have a variety of therapeutic effects, including antioxidation, anti-inflammatory, vasorelaxation, antiallergic, antidiabetic, and anticancer. To date, approximately 40 ginsenoside components have been reported. Current research is concentrating on using a single ginseng compound, one of the ginsenosides, instead of the total ginseng compounds, to determine the mechanisms of ginseng and ginsenosides. Recent in vitro and in vivo results show that ginseng has beneficial effects on cardiac and vascular diseases through efficacy, including antioxidation, control of vasomotor function, modulation of ion channels and signal transduction, improvement of lipid profiles, adjustment of blood pressure, improvement in cardiac function, and reduction in platelet adhesion. This review aims to provide valuable information on the traditional uses of ginseng and ginsenosides, their therapeutic applications in animal models and humans, and the pharmacological action of ginseng and ginsenosides.

Keywords

References

  1. Mahady GB, Gyllenhall C, Fong HH, Farnsworth NR. Ginsengs: a review of safety and efficacy. Nutr Clin Care 2000;3:90-101. https://doi.org/10.1046/j.1523-5408.2000.00020.x
  2. World Health Organization. WHO monographs on selected medicinal plants. Geneva: World Health Organization; 1999.
  3. Gillis CN. Panax ginseng pharmacology: a nitric oxide link? Biochem Pharmacol 1997;54:1-8. https://doi.org/10.1016/S0006-2952(97)00193-7
  4. Buettner C, Yeh GY, Phillips RS, Mittleman MA, Kaptchuk TJ. Systematic review of the effects of ginseng on cardiovascular risk factors. Ann Pharmacother 2006;40:83-95. https://doi.org/10.1345/aph.1G216
  5. Lim KH, Lim DJ, Kim JH. Ginsenoside-Re ameliorates ischemia and reperfusion injury in the heart: a hemodynamics approach. J Ginseng Res 2013;37:283-92. https://doi.org/10.5142/jgr.2013.37.283
  6. Attele AS, Wu JA, Yuan CS. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  7. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen CJ. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10:187-92.
  8. Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action. Acta Pharmacol Sin 2005;26:143-9. https://doi.org/10.1111/j.1745-7254.2005.00034.x
  9. Lim KH, Ko D, Kim JH. Cardioprotective potential of Korean Red Ginseng extract on isoproterenol-induced cardiac injury in rats. J Ginseng Res 2013;37:273-82. https://doi.org/10.5142/jgr.2013.37.273
  10. Toth PP. Making a case for quantitative assessment of cardiovascular risk. J Clin Lipidol 2007;1:234-41. https://doi.org/10.1016/j.jacl.2007.07.002
  11. Libby P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol 2005;45:1600-2. https://doi.org/10.1016/j.jacc.2005.02.058
  12. Davies MJ, Gordon JL, Gearing AJ, Pigott R, Woolf N, Katz D, Kyriakopoulos A. The expression of the adhesion molecules ICAM-1, VCAM-1, PECAM, and Eselectin in human atherosclerosis. J Pathol 1993;171:223-9. https://doi.org/10.1002/path.1711710311
  13. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28:467-95. https://doi.org/10.1039/c0np00057d
  14. Sengupta S, Toh SA, Sellers LA, Skepper JN, Koolwijk P, Leung HW, Yeung HW, Wong RNS, Sasisekharan R, Fan TPD. Modulating angiogenesis: the yin and the yang in ginseng. Circulation 2004;110:1219-25. https://doi.org/10.1161/01.CIR.0000140676.88412.CF
  15. Nah SY, Kim DH, Rhim H. Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev 2007;13:381-404.
  16. Leung KS, Chan K, Bensoussan A, Munroe MJ. Application of atmospheric pressure chemical ionisation mass spectrometry in the identification and differentiation of Panax species. Phytochem Anal 2007;18:146-50. https://doi.org/10.1002/pca.962
  17. Kaneko H, Nakanishi K. Proof of the mysterious efficacy of ginseng: basic effects of medical ginseng, Korean red ginseng: its anti-stress action for prevention of disease. J Pharmacol Sci 2004;95:158-62. https://doi.org/10.1254/jphs.FMJ04001X5
  18. Kasai R, Besso H, Tanaka O, Saruwatari Y, Fuwa T. Saponins of red ginseng. Chem Pharm Bull (Tokyo) 1983;31:2120-5. https://doi.org/10.1248/cpb.31.2120
  19. Kim SI, Park JH, Ryu JH, Park JD, Lee YH, Park JH, Kim TH, Baek NI. Ginsenoside Rg5, a genuine dammarane glycoside from Korean red ginseng. Arch Pharm Res 1996;19:551-3. https://doi.org/10.1007/BF02986026
  20. Ryu JH, Park JH, Eun JH, Jung JH, Sohn DH. A dammarane glycoside from Korean red ginseng. Phytochemistry 1997;44:931-3. https://doi.org/10.1016/S0031-9422(96)00661-9
  21. Park JD, Lee YH, Kim SI. Ginsenoside Rf2, a new dammarane glycoside from Korean red ginseng (Panax ginseng). Arch Pharm Res 1998;21:615-7. https://doi.org/10.1007/BF02975384
  22. Kwon SW, Han SB, Park IH, Kim JM, Park MK, Park JH. Liquid chromatographic determination of less polar ginsenosides in processed ginseng. J Chromatogr A 2001;921:335-9. https://doi.org/10.1016/S0021-9673(01)00869-X
  23. Kim WY, Kim JM, Han SB, Lee SK, Kim ND, Park MK, Kim CK, Park JH. Steaming of ginseng at high temperature enhances biological activity. J Nat Prod 2000;63:1702-4. https://doi.org/10.1021/np990152b
  24. Lee CH, Kim JH. A review on the medicinal potentials of ginseng and ginsenosides on cardiovascular diseases. J Ginseng Res 2014;38:161-6. https://doi.org/10.1016/j.jgr.2014.03.001
  25. Jin ZQ, Liu CM. Effect of ginsenoside Re on the electrophysiological activity of the heart. Planta Med 1994;60:192-3. https://doi.org/10.1055/s-2006-959452
  26. Bai CX, Sunami A, Namiki T, Sawanobori T, Furukawa T. Electrophysiological effects of ginseng and ginsenoside Re in Guinea pig ventricular myocytes. Eur J Pharmacol 2003;476:35-44. https://doi.org/10.1016/S0014-2999(03)02174-5
  27. Bai CX, Takahashi K, Masumiya H, Sawanobori T, Furukawa T. Nitric oxidedependent modulation of the delayed rectifier K+ current and the L-type $Ca^{2+}$ current by ginsenoside Re, an ingredient of Panax ginseng, in Guinea pig cardiomyocytes. Br J Pharmacol 2004;142:567-75. https://doi.org/10.1038/sj.bjp.0705814
  28. Lee JH, Jeong SM, Kim JH, Lee BH, Yoon IS, Choi SH, Lee SM, Park YS, Lee JH, Kim SS, et al. Effects of ginsenosides and their metabolites on voltage dependent $Ca^{2+}$ channel subtypes. Mol Cells 2006;21:52-62.
  29. Choi SH, Lee JH, Pyo MK, Lee BH, Shin TJ, Hwang SH, Kim BR, Lee SM, Oh JW, Kim HC, et al. Mutations Leu427, Asn428, and Leu431 residues within transmembrane domain-I-segment 6 attenuate ginsenoside mediated L-type $Ca^{2+}$ channel current inhibitions. Biol Pharm Bull 2009;32:1224-30. https://doi.org/10.1248/bpb.32.1224
  30. Furukawa T, Bai CX, Kaihara A, Ozaki E, Kawano T, Nakaya Y, Awais M, Sato M, Umezawa Y, Kurokawa J. Ginsenoside Re, a main phytosterol of Panax ginseng, activates cardiac potassium channels via a nongenomic pathway of sex hormones. Mol Pharmacol 2006;70:1916-24. https://doi.org/10.1124/mol.106.028134
  31. Lee JH, Jeong SM, Lee BH, Noh HS, Kim BK, Kim JI, Rhim H, Kim HC, Kim KM, Nah SY. Prevention of ginsenoside-induced desensitization of $Ca^{2+}$-activated Cl- current by microinjection of inositol hexakisphosphate in Xenopus laevis oocytes: involvement of GRK2 and beta-arrestin I. J Biol Chem 2004;279:9912-21. https://doi.org/10.1074/jbc.M310824200
  32. Xue JF, Liu ZJ, Hu JF, Chen H, Zhang JT, Chen NH. Ginsenoside Rb1 promotes neurotransmitter release by modulating phosphorylation of synapsins through a cAMP-dependent protein kinase pathway. Brain Res 2006;1106:91-8. https://doi.org/10.1016/j.brainres.2006.05.106
  33. Chen XC, Zhou YC, Chen Y, Zhu YG, Fang F, Chen LM. Ginsenoside Rg1 reduces MPTP induced substantia nigra neuron loss by suppressing oxidative stress. Acta Pharmacol S 2005;26:56-62. https://doi.org/10.1111/j.1745-7254.2005.00019.x
  34. Choi K, Kim M, Ryu J, Choi C. Ginsenosides compound K and Rh(2) inhibit tumor necrosis factor-alpha-induced activation of the NF-kappaB and JNK pathways in human astroglial cells. Neurosci Lett 2007;421:37-41. https://doi.org/10.1016/j.neulet.2007.05.017
  35. Bolli R. Superoxide dismutase 10 years later: a drug in search of a use. J Am Coll Cardiol 1991;18:231-3. https://doi.org/10.1016/S0735-1097(10)80244-X
  36. Li J, Ichikawa T, Jin Y, Hofseth LJ, Nagarkatti P, Nagarkatti M, Windust A, Cui T. An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes. J Ethnopharmacol 2010;130:222-30. https://doi.org/10.1016/j.jep.2010.03.040
  37. Sohn SH, Kim SK, Kim YO, Kim HD, Shin YS, Yang SO, Kim SY, Lee SW. A comparison of antioxidant activity of Korean White and Red Ginsengs on $H_{2}O_{2}$-induced oxidative stress in HepG2 hepatoma cells. J Ginseng Res 2013;37:442-50. https://doi.org/10.5142/jgr.2013.37.442
  38. Chen X. Cardiovascular protection by ginsenosides and their nitric oxide releasing action. Clin Exp Pharmacol Physiol 1996;23:728-32. https://doi.org/10.1111/j.1440-1681.1996.tb01767.x
  39. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Ginsenoside Rb1 blocks homocysteine-induced endothelial dysfunction in porcine coronary arteries. J Vasc Surg 2005;41:861-8. https://doi.org/10.1016/j.jvs.2005.01.054
  40. Wang X, Chai H, Yao Q, Chen C. Molecular mechanisms of HIV protease inhibitor-induced endothelial dysfunction. J Acquir Immune Defic Syndr 2007;44:493-9. https://doi.org/10.1097/QAI.0b013e3180322542
  41. Xie JT, Shao ZH, Vanden Hoek TL, Chang WT, Li J, Mehendale S, Wang CZ, Hsu CW, Becker LB, Yin JJ, et al. Antioxidant effects of ginsenoside Re in cardiomyocytes. Eur J Pharmacol 2006;532:201-7. https://doi.org/10.1016/j.ejphar.2006.01.001
  42. Deng HL, Zhang JT. Anti-lipid peroxilative effect of ginsenoside Rb1 and Rg1. Chin Med J (Engl) 1991;104:395-8.
  43. He F, Guo R, Wu SL, Sun M, Li M. Protective effects of ginsenoside Rb1 on human umbilical vein endothelial cells in vitro. J Cardiovasc Pharmacol 2007;50:314-20. https://doi.org/10.1097/FJC.0b013e3180cab12e
  44. Kim YM, Namkoong S, Yun YG, Hong HD, Lee YC, Ha KS, Lee H, Kwon HJ, Kwon YG, Kim YM. Water extract of Korean red ginseng stimulates angiogenesis by activating the Pi3k/Akt-dependent Erk1/2 and eNOS pathways in human umbilical vein endothelial cells. Biol Pharm Bull 2007;30:1674-9. https://doi.org/10.1248/bpb.30.1674
  45. Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through Pi3k/Akt and nitric oxide pathways. J Med Invest 2007;54:381-4. https://doi.org/10.2152/jmi.54.381
  46. Lei Y, Gao Q, Chen KJ. Effects of extracts from Panax notoginseng and Panax ginseng fruit on vascular endothelial cell proliferation and migration in vitro. Chin J Integr Med 2008;14:37-41. https://doi.org/10.1007/s11655-008-0037-0
  47. Wan JB, Lee SM, Wang JD, Wang N, He CW, Wang YT, Kang JX. Panax notoginseng reduces atherosclerotic lesions in ApoE-deficient mice and inhibits TNF-alpha-induced endothelial adhesion molecule expression and monocyte adhesion. J Agric Food Chem 2009;57:6692-7. https://doi.org/10.1021/jf900529w
  48. Hien TT, Kim ND, Pokharel YR, Oh SJ, Lee MY, Kang KW. Ginsenoside Rg3 increases nitric oxide production via increases in phosphorylation and expression of endothelial nitric oxide synthase: essential roles of estrogen receptor-dependent Pi3-kinase and Amp-activated protein kinase. Toxicol Appl Pharmacol 2010;246:171-83. https://doi.org/10.1016/j.taap.2010.05.008
  49. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J 1989;53:557-73.
  50. Moncada S, Palmer RM, Higgs EA. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 1991;43:109-42.
  51. Yu J, Eto M, Akishita M, Kaneko A, Ouchi Y, Okabe T. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007;353:764-9. https://doi.org/10.1016/j.bbrc.2006.12.119
  52. Leung KW, Cheng YK, Mak NK, Chan KK, Fan TP, Wong RN. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett 2006;580:3211-6. https://doi.org/10.1016/j.febslet.2006.04.080
  53. Kang YJ, Sohn JT, Chang KC. Relaxation of canine corporal smooth muscle relaxation by ginsenoside saponin Rg3 is independent from eNOS activation. Life Sci 2005;77:74-84. https://doi.org/10.1016/j.lfs.2004.12.016
  54. Jovanovski E, Jenkins A, Dias AG, Peeva V, Sievenpiper J, Arnason JT, Rahelic D, Josse RG, Vuksan V. Effects of Korean red ginseng (Panax ginseng C.A. Mayer) and its isolated ginsenosides and polysaccharides on arterial stiffness in healthy individuals. Am J Hypertens 2010;23:469-72. https://doi.org/10.1038/ajh.2010.5
  55. Lee JY, Lim KM, Kim SY, Bae ON, Noh JY, Chung SM, Kim K, Shin YS, Lee MY, Chung JH. Vascular smooth muscle dysfunction and remodeling induced by ginsenoside Rg3, a bioactive component of ginseng. Toxicol Sci 2010;117:505-14. https://doi.org/10.1093/toxsci/kfq201
  56. Wang T, Yu XF, Qu SC, Xu HL, Sui DY. Ginsenoside Rb3 inhibits angiotensin II induced vascular smooth muscle cells proliferation. Basic Clin Pharmacol Toxicol 2010;107:685-9. https://doi.org/10.1111/j.1742-7843.2010.00560.x
  57. Rhee MY, Kim YS, Bae JH, Nah DY, Kim YK, Lee MM, Kim HY. Effect of Korean red ginseng on arterial stiffness in subjects with hypertension. J Altern Complement Med 2011;17:45-9. https://doi.org/10.1089/acm.2010.0065
  58. Shin W, Yoon J, Oh GT, Ryoo S. Korean red ginseng inhibits arginase and contributes to endothelium-dependent vasorelaxation through endothelial nitric oxide synthase coupling. J Ginseng Res 2013;37:64-73. https://doi.org/10.5142/jgr.2013.37.64
  59. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol 2000;35:135-41. https://doi.org/10.1016/S0306-3623(01)00096-9
  60. Vuksan V, Stavro M, Woo M, Leiter LA, Sung MK, Sievenpiper JL. Korean red ginseng (Panax ginseng) can lower blood pressure in individuals with hypertension: a randomized controlled trial. In: Proceedings of the 9th International Ginseng symposium. Geumsan: Korean Society of Ginseng; 2006. p. 35-6.
  61. Baek EB, Yoo HY, Park SJ, Chung YS, Hong EK, Kim SJ. Inhibition of arterial myogenic responses by a mixed aqueous extract of Salvia miltiorrhiza and Panax notoginseng (PASEL) showing antihypertensive effects. Korean J Physiol Pharmacol 2009;13:287-93. https://doi.org/10.4196/kjpp.2009.13.4.287
  62. Wagner HN, Liu X. The international textbook of cardiology. New York: Pergamon Press; 1987.
  63. Qin N, Gong QH, Wei LW, Wu Q, Huang XN. Total ginsenosides inhibit the right ventricular hypertrophy induced by monocrotaline in rats. Biol Pharm Bull 2008;31:1530-5. https://doi.org/10.1248/bpb.31.1530
  64. Deng J, Wang YW, Chen WM, Wu Q, Huang XN. Role of nitric oxide in ginsenoside Rg(1)-induced protection against left ventricular hypertrophy produced by abdominal aorta coarctation in rats. Biol Pharm Bull 2010;33:631-5. https://doi.org/10.1248/bpb.33.631
  65. Wu Y, Xia ZY, Dou J, Zhang L, Xu JJ, Zhao B, Lei S, Liu HM. Protective effect of ginsenoside Rb1 against myocardial ischemia/reperfusion injury in streptozotocin-induced diabetic rats. Mol Biol Rep 2011;38:4327-35. https://doi.org/10.1007/s11033-010-0558-4
  66. Zhou H, Hou SZ, Luo P, Zeng B, Wang JR, Wong YF, Jiang ZH, Liu L. Ginseng protects rodent hearts from acute myocardial ischemia-reperfusion injury through GR/ER-activated risk pathway in an endothelial NOS-dependent mechanism. J Ethnopharmacol 2011;135:287-98. https://doi.org/10.1016/j.jep.2011.03.015
  67. Wang YL, Wang CY, Zhang BJ, Zhang ZZ. Shenfu injection suppresses apoptosis by regulation of Bcl-2 and caspase-3 during hypoxia/reoxygenation in neonatal rat cardiomyocytes in vitro. Mol Biol Rep 2009;36:365-70. https://doi.org/10.1007/s11033-007-9188-x
  68. Zhu D, Wu L, Li CR, Wang XW, Ma YJ, Zhong ZY, Zhao HB, Cui J, Xun SF, Huang XL, et al. Ginsenoside Rg1 protects rat cardiomyocyte from hypoxia/reoxygenation oxidative injury via antioxidant and intracellular calcium homeostasis. J Cell Biochem 2009;108:117-24. https://doi.org/10.1002/jcb.22233
  69. Kim TH, Lee SM. The effects of ginseng total saponin, panaxadiol and panaxatriol on ischemia/reperfusion injury in isolated rat heart. Food Chem Toxicol 2010;48:1516-20. https://doi.org/10.1016/j.fct.2010.03.018
  70. Guo J, Gan XT, Haist JV, Rajapurohitam V, Zeidan A, Faruq NS, Karmazyn M. Ginseng inhibits cardiomyocyte hypertrophy and heart failure via NHE-1 inhibition and attenuation of calcineurin activation. Circ Heart Fail 2011;4:79-88. https://doi.org/10.1161/CIRCHEARTFAILURE.110.957969
  71. Tsutsumi YM, Tsutsumi R, Mawatari K, Nakaya Y, Kinoshita M, Tanaka K, Oshita S. Compound K, a metabolite of ginsenosides, induces cardiac protection mediated nitric oxide via Akt/Pi3k pathway. Life Sci 2011;88:725-9. https://doi.org/10.1016/j.lfs.2011.02.011
  72. Tamura Y. Effects of Korean red ginseng on eicosanoid biosynthesis in platelets and vascular smooth muscle cells. In: Proceedings of the 6th International Ginseng symposium. Seoul: Korean Society of Ginseng; 1993. p. 28-9.
  73. Dong-Ha Lee DH, Cho HJ, Kim HH, Rhee MH, Ryu JH, Park JH. Inhibitory effects of total saponin from Korean red ginseng via vasodilator-stimulated phosphoprotein-Ser157 phosphorylation on thrombin-induced platelet aggregation. J Ginseng Res 2013;37:176-86. https://doi.org/10.5142/jgr.2013.37.176
  74. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  75. Lee WM, Kim SD, Park MH, Cho JY, Park HJ, Seo GS, Rhee MH. Inhibitory mechanisms of dihydroginsenoside Rg3 in platelet aggregation: critical roles of ERK2 and cAMP. J Pharm Pharmacol 2008;60:1531-6. https://doi.org/10.1211/jpp.60.11.0015
  76. Yang JY, Sun K, Wang CS, Guo J, Xue X, Liu YY, Zheng J, Fan JY, Liao FL, Han JY. Improving effect of post-treatment with Panax notoginseng saponins on lipopolysaccharide-induced microcirculatory disturbance in rat mesentery. Clin Hemorheol Microcirc 2008;40:119-31.
  77. Lee YH, Lee BK, Choi YJ, Yoon IK, Chang BC, Gwak HS. Interaction between warfarin and Korean red ginseng in patients with cardiac valve replacement. Int J Cardiol 2010;145:275-6. https://doi.org/10.1016/j.ijcard.2009.09.553
  78. Yi XQ, Li T, Wang JR, Wong VK, Luo P, Wong IY, Jiang ZH, Liu L, Zhou H. Total ginsenosides increase coronary perfusion flow in isolated rat hearts through activation of PI3K/Akt-eNOS signaling. Phytomedicine 2010;17:1006-15. https://doi.org/10.1016/j.phymed.2010.06.012
  79. Ahn CM, Hong SJ, Choi SC, Park JH, Kim JS, Lim DS. Red ginseng extract improves coronary flow reserve and increases absolute numbers of various circulating angiogenic cells in patients with first ST-segment elevation acute myocardial infarction. Phytother Res 2011;25:239-49.
  80. Trinh HT, Han SJ, Kim SW, Lee YC, Kim DH. Bifidus fermentation increases hypolipidemic and hypoglycemic effects of red ginseng. J Microbiol Biotechnol 2007;17:1127-33.
  81. Hwang SY, Son DJ, Kim IW, Kim DM, Sohn SH, Lee JJ, Kim SK. Korean red ginseng attenuates hypercholesterolemia-enhanced platelet aggregation through suppression of diacylglycerol liberation in high-cholesterol-diet-fed rabbits. Phytother Res 2008;22:778-83. https://doi.org/10.1002/ptr.2363
  82. Zhang YG, Zhang HG, Zhang GY, Fan JS, Li XH, Liu YH, Li SH, Lian XM, Tang Z. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin Exp Pharmacol Physiol 2008;35:1238-44. https://doi.org/10.1111/j.1440-1681.2008.04997.x
  83. Liu G, Wang B, Zhang J, Jiang H, Liu F. Total Panax notoginsenosides prevent atherosclerosis in apolipoprotein E-knockout mice: role of downregulation of CD40 and MMP-9 expression. J Ethnopharmacol 2009;126:350-4. https://doi.org/10.1016/j.jep.2009.08.014
  84. Li J, Xie ZZ, Tang YB, Zhou JG, Guan YY. Ginsenoside-Rd, a purified component from Panax notoginseng saponins, prevents atherosclerosis in apoE knockout mice. Eur J Pharmacol 2011;652:104-10. https://doi.org/10.1016/j.ejphar.2010.11.017
  85. Yuan J, Guo W, Yang B, Liu P, Wang Q, Yuan H. 116 cases of coronary angina pectoris treated with powder composed of Radix Ginseng, Radix Notoginseng and Succinum. J Tradit Chin Med 1997;17:14-7.
  86. Maffei Facino R, Carini M, Aldini G, Berti F, Rossoni G. Panax ginseng administration in the rat prevents myocardial ischemia-reperfusion damage induced by hyperbaric oxygen: evidence for an antioxidant intervention. Planta Med 1999;65:614-9. https://doi.org/10.1055/s-1999-14034
  87. Zhang D, Yasuda T, Yu Y, Zheng P, Kawabata T, Ma Y, Okada S. Ginseng extract scavenges hydroxyl radical and protects unsaturated fatty acids from decomposition caused by iron-mediated lipid peroxidation. Free Radic Biol Med 1996;20:145-50. https://doi.org/10.1016/0891-5849(95)02020-9
  88. Chai H, Zhou W, Lin P, Lumsden A, Yao Q, Chen C. Ginsenosides block HIV protease inhibitor ritonavir-induced vascular dysfunction of porcine coronary arteries. Am J Physiol Heart Circ Physiol 2005;288:H2965-71. https://doi.org/10.1152/ajpheart.01271.2004
  89. Toh HT. Improved isolated heart contractility and mitochondrial oxidation after chronic treatment with Panax ginseng in rats. Am J Chin Med 1994;22:275-84. https://doi.org/10.1142/S0192415X94000334
  90. You JS, Huang HF, Chang YL. Panax ginseng reduces adriamycin-induced heart failure in rats. Phytother Res 2005;19:1018-22. https://doi.org/10.1002/ptr.1778
  91. Choi SH, Shin TJ, Lee BH, Chu DH, Choe H, Pyo MK, Hwang SH, Kim BR, Lee SM, Lee JH, et al. Ginsenoside Rg3 activates human KCNQ1 K+ channel currents through interacting with the K318 and V319 residues: a role of KCNE1 subunit. Eur J Pharmacol 2010;637:138-47. https://doi.org/10.1016/j.ejphar.2010.04.001
  92. Kong HL, Wang JP, Li ZQ, Zhao SM, Dong J, Zhang WW. Anti-hypoxic effect of ginsenoside Rb1 on neonatal rat cardiomyocytes is mediated through the specific activation of glucose transporter-4 ex vivo. Acta Pharmacol Sin 2009;30:396-403.
  93. Kim CS, Son SJ, Kim HS, Kim YD, Lee KS, Jeon BH, Kim KJ, Park JK, Park JB. Modulating effect of ginseng saponins on heterologously expressed HERG currents in Xenopus oocytes. Acta Pharmacol Sin 2005;26:551-8. https://doi.org/10.1111/j.1745-7254.2005.00116.x
  94. Jiang QS, Huang XN, Yang GZ, Jiang XY, Zhou QX. Inhibitory effect of ginsenoside Rb1 on calcineurin signal pathway in cardiomyocyte hypertrophy induced by prostaglandin $F2{\alpha}$. Acta Pharmacol Sin 2007;28:1149-54. https://doi.org/10.1111/j.1745-7254.2007.00601.x
  95. Wang YG, Zima AV, Ji X, Pabbidi R, Blatter LA, Lipsius SL. Ginsenoside Re suppresses electromechanical alternans in cat and human cardiomyocytes. Am J Physiol Heart Circ Physiol 2008;295:H851-9. https://doi.org/10.1152/ajpheart.01242.2007

Cited by

  1. Protective Effects of Sesquiterpenoids from the Root of Panax ginseng on Fulminant Liver Injury Induced by Lipopolysaccharide/D-Galactosamine vol.66, pp.29, 2018, https://doi.org/10.1021/acs.jafc.8b02627
  2. Multifunctional Actions of Ninjinyoeito, a Japanese Kampo Medicine: Accumulated Scientific Evidence Based on Experiments With Cells and Animal Models, and Clinical Studies vol.5, pp.None, 2018, https://doi.org/10.3389/fnut.2018.00093
  3. Seasonal Variation and Possible Biosynthetic Pathway of Ginsenosides in Korean Ginseng Panax ginseng Meyer vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071824
  4. Developments in Taste-Masking Techniques for Traditional Chinese Medicines vol.10, pp.3, 2018, https://doi.org/10.3390/pharmaceutics10030157
  5. Proteomics analyses revealed the reduction of carbon- and nitrogen-metabolism and ginsenoside biosynthesis in the red-skin disorder of Panax ginseng vol.46, pp.12, 2018, https://doi.org/10.1071/fp18269
  6. Panax Notoginseng Saponins Protect Cardiac Myocytes Against Endoplasmic Reticulum Stress and Associated Apoptosis Through Mediation of Intracellular Calcium Homeostasis vol.10, pp.None, 2018, https://doi.org/10.3389/fphar.2019.01013
  7. Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9 vol.17, pp.1, 2019, https://doi.org/10.3892/ol.2018.9701
  8. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke vol.13, pp.None, 2018, https://doi.org/10.3389/fnins.2019.00294
  9. 자연삼 발효 추출물의 미백 활성에 대한 연구 vol.10, pp.2, 2019, https://doi.org/10.15207/jkcs.2019.10.2.285
  10. Ginsenoside Rb1 as an Anti-Diabetic Agent and Its Underlying Mechanism Analysis vol.8, pp.3, 2019, https://doi.org/10.3390/cells8030204
  11. Phytochemicals Targeting VEGF and VEGF-Related Multifactors as Anticancer Therapy vol.8, pp.3, 2018, https://doi.org/10.3390/jcm8030350
  12. Ginsenoside Rk3 ameliorates high-fat-diet/streptozocin induced type 2 diabetes mellitus in mice via the AMPK/Akt signaling pathway vol.10, pp.5, 2019, https://doi.org/10.1039/c9fo00095j
  13. Phenolic Compounds and Ginsenosides in Ginseng Shoots and Their Antioxidant and Anti-Inflammatory Capacities in LPS-Induced RAW264.7 Mouse Macrophages vol.20, pp.12, 2018, https://doi.org/10.3390/ijms20122951
  14. Integrated metabolomics signature for assessing the longevity of Panax ginseng seeds vol.99, pp.13, 2018, https://doi.org/10.1002/jsfa.9887
  15. Effects of Rhodiola rosea and Panax ginseng on the Metabolic Parameters of Rats Submitted to Swimming vol.22, pp.10, 2019, https://doi.org/10.1089/jmf.2019.0062
  16. Research advances in cytochrome P450-catalysed pharmaceutical terpenoid biosynthesis in plants vol.70, pp.18, 2018, https://doi.org/10.1093/jxb/erz203
  17. Current Status and Problem-Solving Strategies for Ginseng Industry vol.25, pp.12, 2018, https://doi.org/10.1007/s11655-019-3046-2
  18. Selection and validation of reference genes desirable for gene expression analysis by qRT-PCR in MeJA-treated ginseng hairy roots vol.14, pp.12, 2019, https://doi.org/10.1371/journal.pone.0226168
  19. Ginsenoside-Rb1 Improved Diabetic Cardiomyopathy through Regulating Calcium Signaling by Alleviating Protein O-GlcNAcylation vol.67, pp.51, 2019, https://doi.org/10.1021/acs.jafc.9b05706
  20. Medicinal plants with anti-mutagenic potential vol.34, pp.1, 2020, https://doi.org/10.1080/13102818.2020.1749527
  21. Intracellular synthesis of gold nanoparticles by Gluconacetobacter liquefaciens for delivery of peptide CopA3 and ginsenoside and anti-inflammatory effect on lipopolysaccharide-activated macrophages vol.48, pp.1, 2020, https://doi.org/10.1080/21691401.2020.1748639
  22. Transfer of Organochlorine Pesticide Residues during Household and Industrial Processing of Ginseng vol.2020, pp.None, 2018, https://doi.org/10.1155/2020/5946078
  23. Ulmus parvifolia Modulates Platelet Functions and Inhibits Thrombus Formation by Regulating Integrin α IIb β 3 and cAMP Signaling vol.11, pp.None, 2020, https://doi.org/10.3389/fphar.2020.00698
  24. Combination of the ginsenosides Rb3 and Rb2 exerts protective effects against myocardial ischemia reperfusion injury in rats vol.45, pp.2, 2020, https://doi.org/10.3892/ijmm.2019.4414
  25. Red Ginseng Improves Exercise Endurance by Promoting Mitochondrial Biogenesis and Myoblast Differentiation vol.25, pp.4, 2020, https://doi.org/10.3390/molecules25040865
  26. Peptides as Potential Biomarkers for Authentication of Mountain-Cultivated Ginseng and Cultivated Ginseng of Different Ages Using UPLC-HRMS vol.68, pp.7, 2018, https://doi.org/10.1021/acs.jafc.9b05568
  27. Pro-Resolving Effect of Ginsenosides as an Anti-Inflammatory Mechanism of Panax ginseng vol.10, pp.3, 2020, https://doi.org/10.3390/biom10030444
  28. Ginsenosides reduce body weight and ameliorate hepatic steatosis in high fat diet-induced obese mice via endoplasmic reticulum stress and p-STAT3/STAT3 signaling vol.21, pp.3, 2018, https://doi.org/10.3892/mmr.2020.10935
  29. Adsorption and desorption characteristics of ginsenosides from Panax ginseng C. A. Meyer on middle‐pressure chromatogram isolated gels vol.43, pp.12, 2018, https://doi.org/10.1002/jssc.201901050
  30. Characteristics of Panax ginseng Cultivars in Korea and China vol.25, pp.11, 2018, https://doi.org/10.3390/molecules25112635
  31. UHPLC coupled with mass spectrometry and chemometric analysis of Kang‐Ai injection based on the chemical characterization, simultaneous quantification, and relative quantification of 47 herbal a vol.43, pp.13, 2020, https://doi.org/10.1002/jssc.201900878
  32. Adaptogenic effects of Panax ginseng on modulation of cardiovascular functions vol.44, pp.4, 2018, https://doi.org/10.1016/j.jgr.2020.03.001
  33. Vitamins combined with traditional Chinese medicine for male infertility: A systematic review and meta‐analysis vol.8, pp.5, 2018, https://doi.org/10.1111/andr.12787
  34. Aquaporin 7 involved in GINSENOSIDE-RB1-mediated anti-obesity via peroxisome proliferator-activated receptor gamma pathway vol.17, pp.1, 2020, https://doi.org/10.1186/s12986-020-00490-8
  35. Designing HA/PEI nanoparticle composite coating on biodegradable Mg-Zn-Y-Nd alloy to direct cardiovascular cells fate vol.2, pp.None, 2018, https://doi.org/10.1016/j.smaim.2021.03.003
  36. Protective effect of panaxydol against repeated administration of aristolochic acid on renal function and lipid peroxidation products via activating Keap1‐Nrf2/ARE pathway in rat kidney vol.35, pp.1, 2018, https://doi.org/10.1002/jbt.22619
  37. Dextran sulfate sodium-induced colitis and ginseng intervention altered oral pharmacokinetics of cyclosporine A in rats vol.265, pp.None, 2018, https://doi.org/10.1016/j.jep.2020.113251
  38. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-κB signalling pathways vol.32, pp.1, 2021, https://doi.org/10.1080/09540105.2021.1934419
  39. Classical Active Ingredients and Extracts of Chinese Herbal Medicines: Pharmacokinetics, Pharmacodynamics, and Molecular Mechanisms for Ischemic Stroke vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/8868941
  40. Antiplatelet and Antithrombotic Effects of Epimedium koreanum Nakai vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/7071987
  41. Anticancer Activities of Ginsenosides, the Main Active Components of Ginseng vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/8858006
  42. Low Molecular Weight Oligosaccharide from Panax ginseng C.A. Meyer against UV-Mediated Apoptosis and Inhibits Tyrosinase Activity In Vitro and In Vivo vol.2021, pp.None, 2018, https://doi.org/10.1155/2021/8879836
  43. A SIRT1 Activator, Ginsenoside Rc, Promotes Energy Metabolism in Cardiomyocytes and Neurons vol.143, pp.3, 2018, https://doi.org/10.1021/jacs.0c10836
  44. Recent progress in polysaccharides from Panax ginseng C. A. Meyer vol.12, pp.2, 2018, https://doi.org/10.1039/d0fo01896a
  45. Anti-Metastatic and Anti-Inflammatory Effects of Matrix Metalloproteinase Inhibition by Ginsenosides vol.9, pp.2, 2021, https://doi.org/10.3390/biomedicines9020198
  46. Ginsenosides for cardiovascular diseases; update on pre-clinical and clinical evidence, pharmacological effects and the mechanisms of action vol.166, pp.None, 2021, https://doi.org/10.1016/j.phrs.2021.105481
  47. HPLC-MS/MS Analysis and Study on the Adsorption/Desorption Characteristics of Ginsenosides on Anion-Exchange Macroporous Resins vol.84, pp.5, 2021, https://doi.org/10.1007/s10337-021-04017-y
  48. Inhibition of angiotensin II-induced hypertrophy and cardiac dysfunction by North American ginseng (Panax quinquefolius) vol.99, pp.5, 2018, https://doi.org/10.1139/cjpp-2020-0480
  49. Rg3-enriched Korean Red Ginseng extract inhibits blood-brain barrier disruption in an animal model of multiple sclerosis by modulating expression of NADPH oxidase 2 and 4 vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.09.001
  50. Positive influence of gut microbiota on the effects of Korean red ginseng in metabolic syndrome: a randomized, double-blind, placebo-controlled clinical trial vol.12, pp.2, 2018, https://doi.org/10.1007/s13167-021-00243-4
  51. Overproduction of anthocyanin in ginseng hairy roots enhances their antioxidant, antimicrobial, and anti-elastase activities vol.48, pp.2, 2018, https://doi.org/10.5010/jpb.2021.48.2.100
  52. Ginsenosides in vascular remodeling: Cellular and molecular mechanisms of their therapeutic action vol.169, pp.None, 2021, https://doi.org/10.1016/j.phrs.2021.105647
  53. Natural product remedies for COVID-19: A focus on safety vol.139, pp.None, 2018, https://doi.org/10.1016/j.sajb.2021.03.012
  54. Ginsenosides attenuate bioenergetics and morphology of mitochondria in cultured PC12 cells under the insult of amyloid beta-peptide vol.45, pp.4, 2018, https://doi.org/10.1016/j.jgr.2020.09.005
  55. Clinical potentials of ginseng polysaccharide for treating gestational diabetes mellitus vol.9, pp.19, 2018, https://doi.org/10.12998/wjcc.v9.i19.4959
  56. Anti-Cancer Effect of Panax Ginseng and Its Metabolites: From Traditional Medicine to Modern Drug Discovery vol.9, pp.8, 2021, https://doi.org/10.3390/pr9081344
  57. Changes in the Growth Characteristics and Compound Contents of 2-Year Old Ginseng according to Chitosan and Ultraviolet Light Treatment vol.29, pp.4, 2021, https://doi.org/10.7783/kjmcs.2021.29.4.253
  58. Design, Synthesis, and Antibacterial Evaluation of Novel Ocotillol Derivatives and Their Synergistic Effects with Conventional Antibiotics vol.26, pp.19, 2018, https://doi.org/10.3390/molecules26195969
  59. Isolation and Identification of Non-Conjugated Linoleic Acid from Processed Panax ginseng Using LC-MS/MS and 1H-NMR vol.8, pp.11, 2021, https://doi.org/10.3390/separations8110208
  60. Ginsenoside Rg3 inhibits angiogenesis in gastric precancerous lesions through downregulation of Glut1 and Glut4 vol.145, pp.None, 2022, https://doi.org/10.1016/j.biopha.2021.112086
  61. Enhanced biotransformation of the minor ginsenosides in red ginseng extract by Penicillium decumbens β-glucosidase vol.153, pp.None, 2022, https://doi.org/10.1016/j.enzmictec.2021.109941