DOI QR코드

DOI QR Code

Antimelanogenesis and skin-protective activities of Panax ginseng calyx ethanol extract

  • Lee, Jeong-Oog (Department of Aerospace Information Engineering, Bio-Inspired Aerospace Information Laboratory, Konkuk University) ;
  • Kim, Eunji (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Ji Hye (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Hong, Yo Han (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Han Gyung (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Jeong, Deok (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Kim, Juewon (Vital Beautie Research Division, Amorepacific R&D Center) ;
  • Kim, Su Hwan (Vital Beautie Research Division, Amorepacific R&D Center) ;
  • Park, Chanwoong (Vital Beautie Research Division, Amorepacific R&D Center) ;
  • Seo, Dae Bang (Vital Beautie Research Division, Amorepacific R&D Center) ;
  • Son, Young-Jin (Department of Pharmacy, Sunchon National University) ;
  • Han, Sang Yun (Department of Biotechnology and Bioengineering, Sungkyunkwan University) ;
  • Cho, Jae Youl (Department of Biotechnology and Bioengineering, Sungkyunkwan University)
  • Received : 2018.01.04
  • Accepted : 2018.02.14
  • Published : 2018.07.15

Abstract

Background: The antioxidant effects of Panax ginseng have been reported in several articles; however, little is known about the antimelanogenesis effect, skin-protective effect, and cellular mechanism of Panax ginseng, especially of P. ginseng calyx. To understand how an ethanol extract of P. ginseng berry calyx (Pg-C-EE) exerts skin-protective effects, we studied its activities in activated melanocytes and reactive oxygen species (ROS)-induced keratinocytes. Methods: To confirm the antimelanogenesis effect of Pg-C-EE, we analyzed melanin synthesis and secretion and messenger RNA and protein expression levels of related genes. Ultraviolet B (UVB) and hydrogen peroxide ($H_2O_2$) were used to induce cell damage by ROS generation. To examine whether this damage is inhibited by Pg-C-EE, we performed cell viability assays and gene expression and transcriptional activation analyses. Results: Pg-C-EE inhibited melanin synthesis and secretion by blocking activator protein 1 regulatory enzymes such as p38, extracellular signal-regulated kinases (ERKs), and cyclic adenosine mono-phosphate response element-binding protein. Pg-C-EE also suppressed ROS generation induced by $H_2O_2$ and UVB. Treatment with Pg-C-EE decreased the expression of matrix metalloproteinases, mitogen-activated protein kinases, and hyaluronidases and increased the cell survival rate. Conclusion: These results suggest that Pg-C-EE may have antimelanogenesis properties and skin-protective properties through regulation of activator protein 1 and cyclic adenosine monophosphate response element-binding protein signaling. Pg-C-EE may be used as a skin-improving agent, with moisture retention and whitening effects.

Keywords

References

  1. Murphy K, Weaver C. Janeway's immunobiology. Garland Science 2016.
  2. Wilkinson P, Millington R. Skin (Digitally printed version ed.). Cambridge (GB) [etc.]: Cambridge university press; 1983.
  3. Kumar CM, Sathisha U, Dharmesh S, Rao AA, Singh SA. Interaction of sesamol (3, 4-methylenedioxyphenol) with tyrosinase and its effect on melanin synthesis. Biochimie 2011;93:562-9. https://doi.org/10.1016/j.biochi.2010.11.014
  4. Laskin JD, Piccinini L, Engelhardt DL, Weinstein IB. Control of melanin synthesis and secretion by B16/C3 melanoma cells. J Cell Physiol 1982;113:481-6. https://doi.org/10.1002/jcp.1041130318
  5. Kim SS, Kim M-J, Choi YH, Kim BK, Kim KS, Park KJ, Park SM, Lee NH, Hyun CG. Down-regulation of tyrosinase, TRP-1, TRP-2 and MITF expressions by citrus press-cakes in murine B16 F10 melanoma. Asian Pac J Trop Biomed 2013;3:617-22. https://doi.org/10.1016/S2221-1691(13)60125-2
  6. Kahari VM, Saarialho-Kere U. Matrix metalloproteinases in skin. Exp Dermatol 1997;6:199-213. https://doi.org/10.1111/j.1600-0625.1997.tb00164.x
  7. Curran S, Murray GI. Matrix metalloproteinases in tumour invasion and metastasis. J Pathol 1999;189:300-8. https://doi.org/10.1002/(SICI)1096-9896(199911)189:3<300::AID-PATH456>3.0.CO;2-C
  8. Verma RP, Hansch C. Matrix metalloproteinases (MMPs): chemicalebiological functions and (Q) SARs. Bioorg Med Chem 2007;15:2223-68. https://doi.org/10.1016/j.bmc.2007.01.011
  9. Senftleben U, Karin M. The IKK/$NF-{\kappa}B$ pathway. Crit Care Med 2002;30:S18-26. https://doi.org/10.1097/00003246-200201001-00003
  10. Chung JH, Kang S, Varani J, Lin J, Fisher GJ, Voorhees JJ. Decreased extracellular-signal-regulated kinase and increased stress-activated MAP kinase activities in aged human skin in vivo. J Invest Dermatol 2000;115:177-82. https://doi.org/10.1046/j.1523-1747.2000.00009.x
  11. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol 2013;53:401-26. https://doi.org/10.1146/annurev-pharmtox-011112-140320
  12. Kim E, Kim D, Yoo S, Hong YH, Han SY, Jeong S, Jeong D, Kim J-H, Cho JY, Park J. The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng. J Ginseng Res 2018;42:218-24. https://doi.org/10.1016/j.jgr.2017.03.007
  13. Papakonstantinou E, Roth M, Karakiulakis G. Hyaluronic acid: a key molecule in skin aging. Dermatoendocrinol 2012;4:253-8. https://doi.org/10.4161/derm.21923
  14. Christensen LP. Ginsenosides: chemistry, biosynthesis, analysis, and potential health effects. Adv Food Nutr Res 2008;55:1-99.
  15. Qi L-W, Wang C-Z, Yuan C-S. Ginsenosides from American ginseng: chemical and pharmacological diversity. Phytochemistry 2011;72:689-99. https://doi.org/10.1016/j.phytochem.2011.02.012
  16. Han SY, Kim J, Kim E, Kim SH, Seo DB, Kim J-H, Shin SS, Cho JY. AKT-targeted anti-inflammatory activity of Panax ginseng calyx ethanolic extract. J Ginseng Res 2017.
  17. Oh Y, Lim H-W, Kim K, Lim C-J. Ginsenoside Re improves skin barrier function in HaCaT keratinocytes under normal growth conditions. Biosci Biotechnol Biochem 2016;80:2165-7. https://doi.org/10.1080/09168451.2016.1206808
  18. Ramesh T, Kim S-W, Hwang S-Y, Sohn S-H, Yoo S-K, Kim S-K. Panax ginseng reduces oxidative stress and restores antioxidant capacity in aged rats. Nutr Res 2012;32:718-26. https://doi.org/10.1016/j.nutres.2012.08.005
  19. Kim H-G, Yoo S-R, Park H-J, Lee N-H, Shin J-W, Sathyanath R, Cho J-H, Son C-G. Antioxidant effects of Panax ginseng CA Meyer in healthy subjects: a randomized, placebo-controlled clinical trial. Food Chem Toxicol 2011;49:2229-35. https://doi.org/10.1016/j.fct.2011.06.020
  20. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3
  21. Park JG, Kang W-S, Park KT, Park DJ, Aravinthan A, Kim J-H, Cho JY. Anticancer effect of joboksansam, Korean wild ginseng germinated from bird feces. J Ginseng Res 2016;40:304-8. https://doi.org/10.1016/j.jgr.2016.02.002
  22. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 1958;181:1199-200. https://doi.org/10.1038/1811199a0
  23. Rittie L, Fisher GJ. UV-light-induced signal cascades and skin aging. Ageing Res Rev 2002;1:705-20. https://doi.org/10.1016/S1568-1637(02)00024-7
  24. Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. Br J Ophthalmol 2006;90:784-92. https://doi.org/10.1136/bjo.2005.086553
  25. Giudice GJ, Fuchs EV. Vitamin A-mediated regulation of keratinocyte differentiation. Methods Enzymol 1990;190:18-29.
  26. Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res Rev Mutat Res 2002;511:145-78. https://doi.org/10.1016/S1383-5742(02)00009-1
  27. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradationea review. Int J Cosmet Sci 2005;27:17-34. https://doi.org/10.1111/j.1467-2494.2004.00241.x
  28. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 2006;126:2565-75. https://doi.org/10.1038/sj.jid.5700340
  29. Muller FL, Lustgarten MS, Jang Y, Richardson A, Van Remmen H. Trends in oxidative aging theories. Free Radic Biol Med 2007;43:477-503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034
  30. Irani K, Xia Y, Zweier JL, Sollott SJ, Der CJ, Fearon ER, Sundaresan M, Finkel T, Goldschmidt-Clermont PJ. Mitogenic signaling mediated by oxidants in Rastransformed fibroblasts. Science 1997;275:1649-52. https://doi.org/10.1126/science.275.5306.1649
  31. Ramsey MR, Sharpless NE. ROS as a tumour suppressor? Nat Cell Biol 2006;8:1213-5. https://doi.org/10.1038/ncb1106-1213
  32. Renschler MF. The emerging role of reactive oxygen species in cancer therapy. Eur J Cancer 2004;40:1934-40. https://doi.org/10.1016/j.ejca.2004.02.031
  33. Meredith P, Riesz J. Radiative relaxation quantum yields for synthetic eumelanin. Photochem Photobiol 2004;79:211-6. https://doi.org/10.1562/0031-8655(2004)079<0211:RCRQYF>2.0.CO;2
  34. Kondo T, Hearing VJ. Update on the regulation of mammalian melanocyte function and skin pigmentation. Expert Rev Dermatol 2011;6:97-108. https://doi.org/10.1586/edm.10.70
  35. Chang T-S. An updated review of tyrosinase inhibitors. Int J Mol Sci 2009;10:2440-75. https://doi.org/10.3390/ijms10062440
  36. Slominski A, Tobin DJ, Shibahara S, Wortsman J. Melanin pigmentation in mammalian skin and its hormonal regulation. Physiol Rev 2004;84:1155-228. https://doi.org/10.1152/physrev.00044.2003
  37. Ebanks JP, Wickett RR, Boissy RE. Mechanisms regulating skin pigmentation: the rise and fall of complexion coloration. Int J Mol Sci 2009;10:4066-87. https://doi.org/10.3390/ijms10094066
  38. Leyden J, Wallo W. The mechanism of action and clinical benefits of soy for the treatment of hyperpigmentation. Int J Dermatol 2011;50:470-7. https://doi.org/10.1111/j.1365-4632.2010.04765.x
  39. Kundu JK, SURH YJ. Epigallocatechin gallate inhibits phorbol ester-induced activation of $NF-{\kappa}B$ and CREB in mouse skin. Ann N Y Acad Sci 2007;1095:504-12. https://doi.org/10.1196/annals.1397.054
  40. Busca R, Ballotti R. Cyclic AMP a key messenger in the regulation of skin pigmentation. Pigment Cell Melanoma Res 2000;13:60-9. https://doi.org/10.1034/j.1600-0749.2000.130203.x
  41. Park H, Gilchrest B. Signaling pathways mediating melanogenesis. Cell Mol Biol (Noisy-le-grand) 1999;45:919-30.
  42. HEARING VJ. The melanosome: the perfect model for cellular responses to the environment. Pigment Cell Melanoma Res 2000;13:23-34. https://doi.org/10.1034/j.1600-0749.13.s8.7.x
  43. Kim K. Effect of ginseng and ginsenosides on melanogenesis and their mechanism of action. J Ginseng Res 2015;39:1-6. https://doi.org/10.1016/j.jgr.2014.10.006
  44. Maeda K, Fukuda M. Arbutin: mechanism of its depigmenting action in human melanocyte culture. J Pharmacol Exp Ther 1996;276:765-9.
  45. Kim S-J, Murthy HN, Hahn E-J, Lee HL, Paek K-Y. Parameters affecting the extraction of ginsenosides from the adventitious roots of ginseng (Panax ginseng CA Meyer). Sep Purif Technol 2007;56:401-6. https://doi.org/10.1016/j.seppur.2007.06.014
  46. Wong VW, Rustad KC, Akaishi S, Sorkin M, Glotzbach JP, Januszyk M, Nelson ER, Levi K, Paterno J, Vial IN. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling. Nat Med 2012;18:148-52. https://doi.org/10.1038/nm.2574
  47. Chun K-S, Keum Y-S, Han SS, Song Y-S, Kim S-H, Surh Y-J. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and $NF-{\kappa}B$ activation. Carcinogenesis 2003;24:1515-24. https://doi.org/10.1093/carcin/bgg107
  48. Gangnuss S, Cowin AJ, Daehn IS, Hatzirodos N, Rothnagel JA, Varelias A, Rayner TE. Regulation of MAPK activation, AP-1 transcription factor expression and keratinocyte differentiation in wounded fetal skin. J Invest Dermatol 2004;122:791-804. https://doi.org/10.1111/j.0022-202X.2004.22319.x

Cited by

  1. Current Status of Research on Ginseng Cosmetics vol.16, pp.4, 2018, https://doi.org/10.20402/ajbc.2018.0249
  2. Anti-Apoptotic and Anti-Inflammatory Activities of Edible Fresh Water Algae Prasiola japonica in UVB-Irradiated Skin Keratinocytes vol.47, pp.8, 2019, https://doi.org/10.1142/s0192415x19500940
  3. MKK7, the essential regulator of JNK signaling involved in cancer cell survival: a newly emerging anticancer therapeutic target vol.11, pp.None, 2018, https://doi.org/10.1177/1758835919875574
  4. Antiphotoaging and Antimelanogenic Effects of Penthorum chinense Pursh Ethanol Extract due to Antioxidant- and Autophagy-Inducing Properties vol.2019, pp.None, 2018, https://doi.org/10.1155/2019/9679731
  5. Antioxidant and Cytoprotective Effects of (−)-Epigallocatechin-3-(3″-O-methyl) Gallate vol.20, pp.16, 2018, https://doi.org/10.3390/ijms20163993
  6. Regulation of 8-Hydroxydaidzein in IRF3-Mediated Gene Expression in LPS-Stimulated Murine Macrophages vol.10, pp.2, 2018, https://doi.org/10.3390/biom10020238
  7. Antimelanogenic Activity of Ocotillol‐Type Saponins from Panax vietnamensis vol.17, pp.5, 2018, https://doi.org/10.1002/cbdv.202000037
  8. STAT3 Differentially Regulates TLR4-Mediated Inflammatory Responses in Early or Late Phases vol.21, pp.20, 2020, https://doi.org/10.3390/ijms21207675
  9. Water Extract of Lotus Leaf Alleviates Dexamethasone-Induced Muscle Atrophy via Regulating Protein Metabolism-Related Pathways in Mice vol.25, pp.20, 2018, https://doi.org/10.3390/molecules25204592
  10. Evaluation of anti-melanogenesis and free radical scavenging activities of five Artocarpus species for cosmeceutical applications vol.161, pp.None, 2021, https://doi.org/10.1016/j.indcrop.2020.113184
  11. In vivo anti-inflammatory effects of Prasiola japonica ethanol extract vol.80, pp.None, 2018, https://doi.org/10.1016/j.jff.2021.104440
  12. The regulatory role of Korean ginseng in skin cells vol.45, pp.3, 2018, https://doi.org/10.1016/j.jgr.2020.08.004
  13. Anti-Pigmentary Natural Compounds and Their Mode of Action vol.22, pp.12, 2018, https://doi.org/10.3390/ijms22126206
  14. Antimelanogenesis Effects of Theasinensin A vol.22, pp.14, 2018, https://doi.org/10.3390/ijms22147453
  15. Human amniotic stem cells-derived exosmal miR-181a-5p and miR-199a inhibit melanogenesis and promote melanosome degradation in skin hyperpigmentation, respectively vol.12, pp.1, 2018, https://doi.org/10.1186/s13287-021-02570-9
  16. Food-derived bioactive compounds with anti-aging potential for nutricosmetic and cosmeceutical products vol.61, pp.22, 2018, https://doi.org/10.1080/10408398.2020.1805407
  17. Bibliometric analysis of the effects of ginseng on skin vol.21, pp.1, 2018, https://doi.org/10.1111/jocd.14450