DOI QR코드

DOI QR Code

Removal Efficiency of Ammonia and Toluene using Mobile Scrubber

이동형 스크러버를 이용한 암모니아 및 톨루엔의 제거 효율

  • Kim, Jae-Young (National Institute of Chemical Safety, Ministry of Environment) ;
  • Kim, Jang-Yoon (National Institute of Chemical Safety, Ministry of Environment) ;
  • Lee, Yeon Hee (National Institute of Chemical Safety, Ministry of Environment) ;
  • Kim, Min Sun (National Institute of Chemical Safety, Ministry of Environment) ;
  • Kim, Min-Su (National Institute of Chemical Safety, Ministry of Environment) ;
  • Kim, Hyun Ji (National Institute of Chemical Safety, Ministry of Environment) ;
  • Ryu, Tae In (National Institute of Chemical Safety, Ministry of Environment) ;
  • Jeong, Jae Hyeong (National Institute of Chemical Safety, Ministry of Environment) ;
  • Hwang, Seung-Ryul (National Institute of Chemical Safety, Ministry of Environment) ;
  • Kim, Kyun (National Institute of Chemical Safety, Ministry of Environment) ;
  • Lee, Jin Hwan (National Institute of Chemical Safety, Ministry of Environment)
  • 김재영 (환경부 화학물질안전원) ;
  • 김장윤 (환경부 화학물질안전원) ;
  • 이연희 (환경부 화학물질안전원) ;
  • 김민선 (환경부 화학물질안전원) ;
  • 김민수 (환경부 화학물질안전원) ;
  • 김현지 (환경부 화학물질안전원) ;
  • 류태인 (환경부 화학물질안전원) ;
  • 정재형 (환경부 화학물질안전원) ;
  • 황승율 (환경부 화학물질안전원) ;
  • 김균 (환경부 화학물질안전원) ;
  • 이진환 (환경부 화학물질안전원)
  • Received : 2018.01.03
  • Accepted : 2018.03.20
  • Published : 2018.03.31

Abstract

BACKGROUND: The mobile vortex wet scrubber was developed to remove the harmful chemicals from accidental releases. However, there was a disadvantage that it was limitedly used for volatile organic compounds (VOCs) such as toluene according to the physicochemical properties. This study compared the removal efficiencies of an improved mobile scrubber on toluene and ammonia by applying diverse adsorption and absorption methods. METHODS AND RESULTS: The removal efficiencies on harmful chemicals were examined using various adsorption and absorption methods of water vortex process (C), phosphoric acid-impregnated activated carbon adsorption (PCA), pH-controlled water (pH 2.5) vortex process absorption with sulfuric acid (SWA) after ammonia exposure, granular activated carbon adsorption (GCA), and activated carbon mat adsorption (CMA) after toluene exposure. As a result, the best removal efficiency was shown in the SWA for ammonia and GCA for toluene. Also, the SWA and GCA methods were compared with different concentration levels. In the case of ammonia exposure (5, 10 and 25%), there was no difference by concentration levels, and the concentration in the outlet gradually increased, with pH change from acid to base. In the case of toluene exposure (50, 75 and 100%), the outlet concentration was higher relative to the exposure concentration in the initial 10 min, but the outlet concentration was remained steady after 10 min. CONCLUSION: The newly improved mobile scrubber was also effective in removing VOCs through adsorption techniques (activated carbon, activated carbon fiber, carbon mat filter etc.), as well as removing acid-base harmful chemicals by neutralization reaction.

본 연구는 국내에서 다량 취급되고 있는 암모니아 및 톨루엔을 흄 상태로 노출시킨 후 흡수/흡착방법을 달리한 이동형 스크러버를 이용해 각 유해화학물질의 제거효율을 비교 분석하였다. 이동형 스크러버는 기 개발된 장치를 개선하여 와류 세정에 의한 흡수, 유입풍속 조절의 장점을 살리고, 활성탄 및 카본필터를 통한 기체상 유해화학물질의 흡착방법 도입을 통해 단점을 보완하였다. 개선된 장치는 기초성능평가를 통해 적정 제어풍속이 검증되었고, 5% 암모니아수 용액을 흄 상태로 노출시켜 후드 흡입부, 송풍기 배출부 및 세정기가 정상 작동함을 확인하였다. 흡수/흡착방법에 따른 암모니아 제거효율은 90분 경과 후 C${\geq}$PCA>SWA 순으로 가장 우수한 SWA 군의 노출 농도별 제거 효율은 시간이 경과할수록 노출 농도와 무관하게 배출 농도는 증가되었고, 세정액의 pH는 산성에서 염기성으로 변화되었다. 또한, 시간 경과에 따른 노출 농도 별 세정액의 pH 변화와 배출구 농도 변화 사이에 0.9429~0.9491 수준의 정의 상관관계를 나타내었다. 흡착방법에 따른 톨루엔의 제거 효율은 초기 10분 경과 후 배출구농도에서 C>CMA${\geq}$GCA 순을 나타내다 90분 경과까지 일정한 농도로 유지되었다. 가장 우수한 GCA 군의 노출 농도별 제거 효율은 초기 10분 경과 시 노출 농도에 비례하여 배출 농도가 높은 경향이었다. 이와 같은 결과를 통해 개선된 이동형 스크러버는 중화반응에 의해 산성 또는 염기성 유해 화학물질의 제거 뿐 아니라, 활성탄 등의 흡착기능 개선을 통해 VOCs 제거에도 효과적이었다. 하지만, 실제 현장에서 활용이 가능하도록 세정액 pH를 지속적으로 유지하여 연속적으로 흡수 제거할 수 있는 방법과 노출되는 화학물질 농도와 흡착제의 관계에서 파괴점, 포화점, 흡착속도 등의 물리적인 요소가 추가적인 연구를 통해 도출되어야 할 것이다.

Keywords

References

  1. Ahn, H. G., Jung, S. C., & Park, S. S. (2002). Adsorption characteristics of sulfide and amine on $H_3PO_4$ impregnated activated carbon in flow system. Journal of Korean Society of Environmental Engineers, 24(9), 1615-1622.
  2. Ahn, S. R., Kim, S. B., Lee, J. H., & Chun, K. S. (2014). Study on chemical incident response plan identified as a chemical accident statistics. Korean Journal of Hazardous Materials, 2(1), 50-54.
  3. Baek, G. H., Kim, J. S., Jang, H. T., Kim, H. W., Kim, H. J., & Cha, W. S. (2011). Adsorption/desorption properties of VOCs on activated carbon fiber. Journal of the Korea Academia-Industrial, 12(5), 2439-2444. https://doi.org/10.5762/KAIS.2011.12.5.2439
  4. Cotte, F., Fanlo, J. L., Cloirec, P. L., & Escobar, P. (1995). Absorption of odorous molecules in aqueous solutions of polyethylene glycol. Environmental Technology, 16, 127-136. https://doi.org/10.1080/09593331608616253
  5. Hung, C. M., Lou, J. C. & Lin, C. H. (2003). Removal of ammonia solutios used in catalytic wet oxidation processes. Chemosphere, 52, 989-995. https://doi.org/10.1016/S0045-6535(03)00303-5
  6. Kwak, J. H., Hwang, S. R., Lee, Y. H., Kim, J. Y., Song, K. B., Kim, K., Kang, J. E., Lee, S. J., Jeon, J., & Lee, J. H. (2015). Development of mobile vortex wet scrubber and evaluation of gas removal efficiency. Korean Journal of Environmental Agriculture, 34(2), 134-138. https://doi.org/10.5338/KJEA.2015.34.2.18
  7. Lee, D. J., Lee, T. H., & Shin, C. H. (2017). Study of the improvement of hazardous chemical management for chemical accident prevention. Fire Science and Engineering, 31(1), 74-80. https://doi.org/10.7731/KIFSE.2017.31.1.074
  8. Lillo-Rodenas, M. A., Fletcher, A. J., Thomas, K. M., Cazorla-Amoros, D. & Linares-Solano, A. (2006). Competitive adsorption of a benzene-toluene mixture on activated carbons at low concentration. Carbon, 44, 1455-1463. https://doi.org/10.1016/j.carbon.2005.12.001
  9. Mohan, N., Kannan, G. K., Upendra, S., Subha, R., & Kumar, N. S. (2009). Breakthrough of toluene vapours in granular activated carbon filled packed bed reactor. Journal of Hazardous Materials, 168, 777-781. https://doi.org/10.1016/j.jhazmat.2009.02.079
  10. Noh, S. Y., Kim, K. H., Choi, J. H., Han, S. D., Kil, I. S. Kim, D. H., & Rhee, Y. W. (2008). Adsortion characteristics of VOCs in activated carbon beds. Journal of Korean Society for Atmospheric Environment, 24(4), 455-469. https://doi.org/10.5572/KOSAE.2008.24.4.455
  11. Park, B. B., Kim, H. S., & Park, Y. S. (2001). Simultaneous adsorption characteristics of binary-component volatile organic compounds. Clean Technology, 7(2), 133-140.
  12. Park, G. I., Lee, H. K., Park, Y. T., & Moon, H. (1997). A study on the adsorption characteristics of $NH_3$ on $H_3PO_4$ impregnated carbon in fixed bed. Journal of Korean Society of Environmental Engineers, 19(9), 1125-1134.
  13. Woo, K. J., Kim, S. D., & Lee, S. H. (2007). Adsorption characteristics of multi-component VOCs including poorly absorbable chemicals on activated carbonaceous adsorbents. Korean Chemical Engineering Research, 45(3), 277-285.
  14. Yasyerli, S., Ar, I., Dogu, G. & Dogu, T. (2002). Removal of hydrogen sulfide by clinoptilolite in a fixed bed adsorber. Chemical Engineering and Processing, 41, 785-792. https://doi.org/10.1016/S0255-2701(02)00009-0