DOI QR코드

DOI QR Code

Effect of Phosphorus Removal by Oyster Shell on Longevity of Constructed Wetlands

굴패각에 의한 인 처리가 인공습지의 수명에 미치는 영향

  • Kim, Seong-Heon (Department of Agricultural Chemistry and Food Science & Technology & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Hong-Chul (Department of Pharmaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Park, Jong-Hwan (School of plant, Environmental and Soil Sciences, Louisiana State University Agricultural center) ;
  • Ryu, Seong-Ki (Department of Agricultural Chemistry and Food Science & Technology & Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Se-Won (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Cho, Ju-Sik (Department of Bio-Environmental Sciences, Sunchon National University) ;
  • Seo, Dong-Cheol (Department of Agricultural Chemistry and Food Science & Technology & Institute of Agriculture and Life Science, Gyeongsang National University)
  • 김성헌 (경상대학교 농화학식품공학과&농업생명과학연구원) ;
  • 김홍출 (경남과학기술대학교 제약공학과) ;
  • 박종환 (루이지애나주립대학교 식물환경토양과학부) ;
  • 류성기 (경상대학교 농화학식품공학과&농업생명과학연구원) ;
  • 강세원 (순천대학교 생물환경학과) ;
  • 조주식 (순천대학교 생물환경학과) ;
  • 서동철 (경상대학교 농화학식품공학과&농업생명과학연구원)
  • Received : 2018.03.14
  • Accepted : 2018.03.26
  • Published : 2018.03.31

Abstract

BACKGROUND: Constructed wetlands are low-cost alternatives for treating domestics sewage. However, previous study has reported that the removal of phosphorus in constructed wetlands was limited. Therefore, a new alternative was needed to extend the life of the constructed wetlands. The purpose of this study was to evaluate the effect of total phosphorus removal by oyster shell on longevity of constructed wetlands for treating domestic sewage. METHODS AND RESULTS: The changes of total phosphorus concentration and treatment efficiency in two constructed wetlands (CWs) classified as system A (coarse sand 100%) and system B (coarse sand 90%+oyster shell 10%) were investigated for 6 years. The actual saturation time of total phosphorus in the systems A and B was estimated to be longer than that of theoretical saturation by adsorption isotherm experiment. In particular, the saturation pattern of phosphorus in system A was maintained at a certain concentration level in the initial stage of operation, and finally saturation was reached as the saturation gradually progressed from the breaking point. In system B, the saturation period of phosphorus was prolonged as compared with system A due to the addition of oyster shells. CONCLUSION: Our results suggest that the longevity of the constructed wetlands can be extended due to the phosphorus saturation by adding the oyster shells to the coarse sands in constructed wetlands.

본 연구는 하수처리를 위한 VF-HF 조합형 인공습지에서 굴패각이 인공습지 수명에 미치는 영향을 조사하기 위해, 6년간 인공습지에서 총인의 농도 변화를 장기간 모니터링 한 후 이를 토대로 굴패각이 인공습지의 수명 연장에 미치는 영향을 종합적으로 평가하였다. 왕사만 사용한 system A에서 인이 실제 포화에 도달하는 시간은 최대 인 흡착능력에 기반한 이론적 포화치에 비해 4배 이상 긴 것으로 평가되었으며, 특히 인의 포화패턴은 운영 초기에는 일정농도 수준으로 유지되다가 흡착에서 파과점과 같은 지점을 통과하면서 서서히 포화가 진행되어가면서 최종적으로 포화에 도달하였다. 굴패각과 왕사를 혼합한 여재를 사용한 system B에서도 이론적 포화예상시간을 초과하여 안정적으로 인이 처리됨을 확인하였고, 굴패각의 첨가로 system A에 비해 인의 포화시기가 연장됨을 확인하였다. 이상의 결과를 미루어 볼 때 실제 인공습지 여재에 굴패각을 혼합하면 여재의 인 흡착량을 증가시켜 이론적인 포화치보다 인의 포화시기를 더 늘릴 수 있으며, 최종적으로 인공습지의 수명을 연장 시킬 수 있다고 판단된다. 또한 굴패각을 사용하는 것은 굴 양식장에서 발생하는 부산물인 굴패각을 재활용하는 것으로서 폐기물의 재활용 측면에서 환경오염을 줄이기 위한 방안으로도 활용될 수 있을 것이다.

Keywords

References

  1. Diazo, A., Reddy, K. R. & Moore, P. A. (1994). Solubility of inorganic P in stream water as influenced by pH and Ca concentration. Water Research, 28(8), 1755-1763. https://doi.org/10.1016/0043-1354(94)90248-8
  2. Greenway, M. & Woolley, A. (1999). Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecological engineering, 12(1-2), 39-55. https://doi.org/10.1016/S0925-8574(98)00053-6
  3. Hawkins, W. B., John, H. R., Gillespie, W. B., Dunn, P. B., Dom, P. B. & Cano, M. L. (1997). Design and construction of wetlands for aqueous transfers and transformations of selected metals. Ecotoxicology and Environmental Safety, 36, 238-248. https://doi.org/10.1006/eesa.1996.1505
  4. Johansson, L. (1999). Industrial by-products and natural substrata as phosphorus sorbents. Environmental Technology, 20(3), 309-316. https://doi.org/10.1080/09593332008616822
  5. Kadlec, R. H. & Wallace, S. (2009) Treatment Wetlands, 1-1020. 2nd ed. CRC Press. Broken Sound Parkway New York, USA.
  6. Lee, H. J., Seo, D. C., Cho, J. S. & Heo, J. S. (2003). Screening of the optimum filter media in the constructed wetland systems through phosphorus adsorption capacities, Korean Journal of Environmental Agriculture, 22(2), 148-152. https://doi.org/10.5338/KJEA.2003.22.2.148
  7. Mann, R. A. (1997). Phosphorus adsorption and desorption characteristics of constructed wetland gravels and steelworks by-products. Soil Research, 35(2), 375-384. https://doi.org/10.1071/S96041
  8. Newbold, J. D., Elwood, J. W., O'Neill, R. V. & Sheldon, A. L. (1983). Phosphorus dynamics in a woodland stream ecosystem: a study of nutrient spiralling. Ecology, 64(5), 1249-1265. https://doi.org/10.2307/1937833
  9. Park, J. H., Kim, S. H., Delaune, R.D., Kang, B. H., Kang, S. W., Cho, J. S., Ok, Y. S. & Seo, D. C. (2016). Enhancement of phosphorus removal with near neutral pH utilizing steel and ferronickel slags for application of constructed wetlands. Ecological Engineering, 95, 612-621. https://doi.org/10.1016/j.ecoleng.2016.06.052
  10. Reddy, K. R., Kadlec, R. H., Flaig, E. & Gale, P. M. (1999). Phosphorus retention in streams and wetlands: a review. Critical Reviews in Environmental Science and Technology, 29(1), 83-146. https://doi.org/10.1080/10643389991259182
  11. Reddy, K. R. & Delaune, R. D. (2008). Biogeochemistry of wetlands: science and applications, CRC press, USA.
  12. Richardson, C. J. & Craft, C. B. (1993). Effective phosphorus retention in wetlands: fact or fiction. Constructed Wetlands for Water Quality Improvement, 271-282.
  13. Richardson, C. J. (1999). Phosphorus biogeochemistry in sub-tropical ecosystems, The role of wetlands in storage, release, and cycling of phosphorus on the landscape: a 25-year retrospective (eds. Reddy, K. R., o'Connor, G. A., Schelske, C. L.), pp. 47-68, Lewis Publishers, Boca Raton London New York Washington, D. C., USA.
  14. Seo, D. C., Cho, J. S., Lee, H. J. & Heo, J. S. (2005). Phosphorus retention capacity of filter media for estimating the longevity of constructed wetland. Water Research, 39(11), 2445-2457. https://doi.org/10.1016/j.watres.2005.04.032
  15. Seo, D. C., Delaune, R. D., Park, W. Y., Lim, J. S., Seo, J. Y., Lee, D. J., Cho, J. S. & Heo, J. S. (2009). Evaluation of a hybrid constructed wetland for treating domestic sewage from individual housing units surrounding agricultural villages in south korea. Journal of Environmental Monitoring, 11(1), 134-144. https://doi.org/10.1039/B806017G
  16. Seo, D. C., Park, J. H., Cheon, Y. S., Park, S. K., Kim, A. R., Lee, W. G. & Heo, J. S. (2010). Treatment efficiency of pollutants in constructed wetlands under different hydroponic wastewater injection methods and characteristic of filter media. Korean Journal of Environmental Agriculture, 29(2), 146-151. https://doi.org/10.5338/KJEA.2010.29.2.146
  17. Siedel, K. (1961). Zur problematik der keim-und pflanzengewasser. Verh. Internat. Verein. Limnology, 14, 1035-1039.
  18. Tanner, C. C., Sukias, J. P. & Upsdell, M. P. (1998). Relationships between loading rates and pollutant removal during maturation of gravel-bed constructed wetlands. Journal of Environmental Quality, 27(2), 448-458. https://doi.org/10.2134/jeq1998.00472425002700020028x
  19. Vymazal, J. (2007). Removal nutrients in various types of constructed wetlands. Science of Total Environment, 380(1-3), 48-65. https://doi.org/10.1016/j.scitotenv.2006.09.014