References
- White KE, Bilous RW. Type 2 diabetic patients with nephropathy show structural-functional relationships that are similar to type 1 disease. J Am Soc Nephrol. 2000; 11: 1667-73.
- Mauer SM, Steffes MW, Ellis EN, Sutherland DE, Brown DM, Goetz FC. Structural-functional relationships in diabetic nephropathy. The Journal of clinical investigation. 1984; 74: 1143-55. https://doi.org/10.1172/JCI111523
- Zhang Y, Chen B, Hou XH, Guan GJ, Liu G, Liu HY, Li XG. Effects of mycophenolate mofetil, valsartan and their combined therapy on preventing podocyte loss in early stage of diabetic nephropathy in rats. Chinese medical journal. 2007; 120: 988-95.
- Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG, Coplon NS, Sun L, Meyer TW. Podocyte loss and progressive glomerular injury in type II diabetes. The Journal of clinical investigation. 1997; 99: 342-8. https://doi.org/10.1172/JCI119163
- Meyer TW, Bennett PH, Nelson RG. Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia. 1999; 42: 1341-4. https://doi.org/10.1007/s001250051447
- Kang AY, Park SK, Park SY, Lee HJ, Han Y, Lee SR, Suh SH, Kim DK, Park MK. Therapeutic target achievement in type 2 diabetic patients after hyperglycemia, hypertension, dyslipidemia management. Diabetes & metabolism journal. 2011; 35: 264-72. https://doi.org/10.4093/dmj.2011.35.3.264
- Satirapoj B, Adler SG. Prevalence and Management of Diabetic Nephropathy in Western Countries. Kidney diseases. 2015; 1: 61-70. https://doi.org/10.1159/000382028
- Baynes JW. Role of oxidative stress in development of complications in diabetes. Diabetes. 1991; 40: 405-12.
- Brownlee M. Advanced protein glycosylation in diabetes and aging. Annual review of medicine. 1995; 46: 223-34. https://doi.org/10.1146/annurev.med.46.1.223
- Forbes JM, Coughlan MT, Cooper ME. Oxidative stress as a major culprit in kidney disease in diabetes. Diabetes. 2008; 57: 1446-54. https://doi.org/10.2337/db08-0057
- Nistala R, Whaley-Connell A, Sowers JR. Redox control of renal function and hypertension. Antioxidants & redox signaling. 2008; 10: 2047-89. https://doi.org/10.1089/ars.2008.2034
- Yan SD, Yan SF, Chen X, Fu J, Chen M, Kuppusamy P, Smith MA, Perry G, Godman GC, Nawroth P et al. Non-enzymatically glycated tau in Alzheimer's disease induces neuronal oxidant stress resulting in cytokine gene expression and release of amyloid beta-peptide. Nature medicine. 1995; 1: 693-9. https://doi.org/10.1038/nm0795-693
- Moore KJ, Freeman MW. Scavenger receptors in atherosclerosis: beyond lipid uptake. Arteriosclerosis, thrombosis, and vascular biology. 2006; 26: 1702-11. https://doi.org/10.1161/01.ATV.0000229218.97976.43
- Yamamoto Y, Yamamoto H. Interaction of receptor for advanced glycation end products with advanced oxidation protein products induces podocyte injury. Kidney international. 2012; 82: 733-5. https://doi.org/10.1038/ki.2012.163
- Chuang PY, Yu Q, Fang W, Uribarri J, He JC. Advanced glycation endproducts induce podocyte apoptosis by activation of the FOXO4 transcription factor. Kidney international. 2007; 72: 965-76. https://doi.org/10.1038/sj.ki.5002456
- Ahmed N. Advanced glycation endproducts--role in pathology of diabetic complications. Diabetes research and clinical practice. 2005; 67: 3-21. https://doi.org/10.1016/j.diabres.2004.09.004
- Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts. Archives of biochemistry and biophysics. 2003; 419: 63-79. https://doi.org/10.1016/j.abb.2003.08.009
- Peppa M, Brem H, Cai W, Zhang JG, Basgen J, Li Z, Vlassara H, Uribarri J. Prevention and reversal of diabetic nephropathy in db/db mice treated with alagebrium (ALT-711). American journal of nephrology. 2006; 26: 430-6. https://doi.org/10.1159/000095786
- Osawa T, Kato Y. Protective role of antioxidative food factors in oxidative stress caused by hyperglycemia. Annals of the New York Academy of Sciences. 2005; 1043: 440-51. https://doi.org/10.1196/annals.1333.050
- Kim P, Park JH, Kwon KJ, Kim KC, Kim HJ, Lee JM, Kim HY, Han SH, Shin CY. Effects of Korean red ginseng extracts on neural tube defects and impairment of social interaction induced by prenatal exposure to valproic acid. Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2013; 51: 288-96. https://doi.org/10.1016/j.fct.2012.10.011
- Park HM, Kim SJ, Mun AR, Go HK, Kim GB, Kim SZ, Jang SI, Lee SJ, Kim JS, Kang HS. Korean red ginseng and its primary ginsenosides inhibit ethanol-induced oxidative injury by suppression of the MAPK pathway in TIB-73 cells. Journal of ethnopharmacology. 2012; 141: 1071-6. https://doi.org/10.1016/j.jep.2012.03.038
- Paul S, Shin HS, Kang SC. Inhibition of inflammations and macrophage activation by ginsenoside-Re isolated from Korean ginseng (Panax ginseng C.A. Meyer). Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association. 2012; 50: 1354-61. https://doi.org/10.1016/j.fct.2012.02.035
- Wang CZ, Anderson S, Du W, He TC, Yuan CS. Red ginseng and cancer treatment. Chinese journal of natural medicines. 2016; 14: 7-16.
- Hosseini A, Ghorbani A. Cancer therapy with phytochemicals: evidence from clinical studies. Avicenna journal of phytomedicine. 2015; 5: 84-97.
- Zeng X, Li J, Li Z. Ginsenoside Rd mitigates myocardial ischemia-reperfusion injury via Nrf2/O-1 signaling pathway. Int J Clin Exp Med. 2015; 8: 14497-504.
- Zhang YX, Wang L, Xiao EL, Li SJ, Chen JJ, Gao B, Min GN, Wang ZP, Wu YJ. Ginsenoside-Rd exhibits anti-inflammatory activities through elevation of antioxidant enzyme activities and inhibition of JNK and ERK activation in vivo. Int Immunopharmacol. 2013; 17: 1094-100. https://doi.org/10.1016/j.intimp.2013.10.013
- Hou J, Xue J, Lee M, Sung C. Ginsenoside Rd as a potential neuroprotective agent prevents trimethyltin injury. Biomed Rep. 2017; 6: 435-40. https://doi.org/10.3892/br.2017.864
- Mundel P, Reiser J. New aspects of podocyte cell biology. Kidney Blood Press Res. 1997; 20: 173-6. https://doi.org/10.1159/000174136
- Morris RD, Rimm DL, Hartz AJ, Kalkhoff RK, Rimm AA. Obesity and heredity in the etiology of non-insulin-dependent diabetes mellitus in 32,662 adult white women. American journal of epidemiology. 1989; 130: 112-21. https://doi.org/10.1093/oxfordjournals.aje.a115302
- Blair M. Diabetes Mellitus Review. Urologic nursing. 2016; 36: 27-36.
- Musabayane CT. The effects of medicinal plants on renal function and blood pressure in diabetes mellitus. Cardiovascular journal of Africa. 2012; 23: 462-8. https://doi.org/10.5830/CVJA-2012-025
- Sohn E, Kim J, Kim CS, Lee YM, Jo K, Shin SD, Kim JH, Kim JS. The Extract of Litsea japonica Reduced the Development of Diabetic Nephropathy via the Inhibition of Advanced Glycation End Products Accumulation in db/db Mice. Evidenceased complementary and alternative medicine. 2013; 2013: 769416.
- Yin J, Zhang H, Ye J. Traditional chinese medicine in treatment of metabolic syndrome. Endocrine, metabolic & immune disorders drug targets. 2008; 8: 99-111. https://doi.org/10.2174/187153008784534330
- Doh KC, Lim SW, Piao SG, Jin L, Heo SB, Zheng YF, Bae SK, Hwang GH, Min KI, Chung BH et al. Ginseng treatment attenuates chronic cyclosporine nephropathy via reducing oxidative stress in an experimental mouse model. American journal of nephrology. 2013; 37: 421-33. https://doi.org/10.1159/000349921
- Yokozawa T, Liu ZW, Dong E. A study of ginsenoside-Rd in a renal ischemia-reperfusion model. Nephron. 1998; 78: 201-6. https://doi.org/10.1159/000044911
- Yokozawa T, Owada S. Effect of ginsenoside-Rd in cephaloridine-induced renal disorder. Nephron. 1999; 81: 200-7. https://doi.org/10.1159/000045277
- Yokozawa T, Liu ZW. The role of ginsenoside-Rd in cisplatin-induced acute renal failure. Renal failure. 2000; 22: 115-27. https://doi.org/10.1081/JDI-100100858
- Quan HY, Kim DY, Chung SH. Korean red ginseng extract alleviates advanced glycation end productmediated renal injury. Journal of ginseng research. 2013; 37: 187-93. https://doi.org/10.5142/jgr.2013.37.187
- Lee HY, Park KH, Park YM, Moon DI, Oh HG, Kwon DY. Yang HJ, Kim O, Kim DW, Yoo JH, Hong SC, Lee KH, Seol SY, Park YS, Park JD, Pyo MK. Effects of pectin lyase-modified red ginseng extracts in high-fat diet-fed obese mice. Lab Anim Res. 2014; 30: 151-60 https://doi.org/10.5625/lar.2014.30.4.151
- Kim CS, Jo K, Kim JS, Pyo MK, Kim J. GS-E3D, a new pectin lyase-modified red ginseng extract, inhibited diabetes-related renal dysfunction in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 2017; 17: 430. https://doi.org/10.1186/s12906-017-1925-7
- Kim CS, Jo K, Pyo MK, Kim JS, Kim J. Pectin lyase-modified red ginseng extract exhibits potent anti-glycation effects in vitro and in vivo. J Exerc Nutrition Biochem. 2017; 21: 56-62. https://doi.org/10.20463/jenb.2017.0011