DOI QR코드

DOI QR Code

Effect of Cetyltrimethyl Ammonium Bromide on Foam Stability and SiO2Separation for Decontamination Foam Application

거품제염을 위한 실리카 나노입자와 CTAB (Cetyltrimethyl Ammonium Bromide)의 거품안정성 및 분리특성 평가

  • Received : 2017.11.13
  • Accepted : 2018.04.03
  • Published : 2018.06.29

Abstract

As part of planning for waste minimization, decontamination foam has been considered as a potential application for the cleaning of radioactive contaminant. In this study, we synthesized silica particles to improve foam stability by varying synthesis parameters. Cetyltrimethylammonium bromide (CTAB) was found to influence the stability of the decontamination foam. The reason was that higher interaction between $SiO_2$ nanoparticles and surfactant at the air-water interface in aqueous solution is beneficial for foam stability. CTAB can also be used as an additive for the aggregation of silica nanoparticles. In the separation of $SiO_2$ nanoparticles, CTAB plays a critical role in the nanoparticles flocculation because of the charge neutralization and hydrophobic effects of its hydrocarbon tails.

원자력 시설 내 방사능을 포함하는 물질의 제염을 위한 방법 중 거품제염은 2차폐기기물의 양을 저감시킬 수 있는 장점을 지니고 있다. 본 연구에서는 거품안정성을 증가시킬 수 있는 실리카 나노입자를 여러가지 조건을 달리하여 합성하였다. Cetyltrimethylammonium bromide(CTAB)는 거품제염제의 거품안정성에 많은 영향을 나타내었다. 이러한 거품안정성이 향상된 이유는 제염제 내에 공기와 용액간의 계면에서 실리카 나노입자와 계면활성제의 반응으로 생각된다. 또한, CTAB는 실리카나노입자의 분리특성에서도 우수한 성능을 나타냈었다. 실리카 나노입자 분리시, CTAB의 탄화수소기에 의한 소수성과 전하중성화에 의해서 실리카 나노입자의 응집현상을 향상시켰다.

Keywords

References

  1. L. Nunez and L. Kaminski, Foam and gel methods for the decontamination of metallic surface, US patent, 7, 166,758 (2007).
  2. I.H. Yoon, C.H. Jung, S.B. Yoon, S.Y. Park, J.K. Moon, and W.K. Choi, "Effect of silica nanoparticles on the stability of decontamination foam and their application for oxide dissolution of cored specimens", Ann. Nucl. Energy, 73, 168-174 (2014). https://doi.org/10.1016/j.anucene.2014.06.046
  3. R. Hoppe, A. Ortlam, J. Rathousky, G. Schulz-Ekloff, and A. Zukal, Syhtnesis of titanium-containing MCM-41 mesoporous molecular sieves in the presence of zinc phthalocyanine and rhodamine B, Microporous Mater. 8, 267-273 (1997). https://doi.org/10.1016/S0927-6513(96)00085-5
  4. E. Chomski, O. Dag, A. Kuperman, N. Coombs, and G. A. Ozin, New forms of luminescent silicon: silicon-silica composite mesostructures, Chemical vapor deposition, 2, 8-13 (1996). https://doi.org/10.1002/cvde.19960020103
  5. B.P. Binks, Particles as surfactants-similarities and differences, Curr. Opin. Colloid Interface Sci., 7, 21-41 (2002). https://doi.org/10.1016/S1359-0294(02)00008-0
  6. E. Santini, J. Kragel, F. Ravera, L. Liggieri, and R. Miller, Study of the monolayer structure and wettability properties of silica nanoparticles and CTAB using Langmuir trough technique, Colloids Surf. A; Physicochem. Eng. Aspects, 382, 186-191 (2011). https://doi.org/10.1016/j.colsurfa.2010.11.042
  7. A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, and R. G.Rubio, Wettability of silica nanoparticle-surfactant nanocomposite interfacial layers, Soft Matter, 8, 837-843 (2012). https://doi.org/10.1039/C1SM06421E
  8. X.K. Ma, N.H. Lee, H.J. Oh, J.W. Kim, C.K. Rhee, K.S. Park, and S.J. Kim, Surface modification and characterization of highly dispersed silica-naoparticles by a cationic surfactant, Colloids Surf. A; Physicochem. Eng. Aspects, 358, 172-176 (2010). https://doi.org/10.1016/j.colsurfa.2010.01.051
  9. B. Fouconnier, A. Roman-Guerrero, and E. J. Vernon-Carter, Effect of [CTAB]-[$SiO_2$] ratio on the formation and stability of hexadecane/water emulsions in the presence NaCl, Colloids Surf. A; Physicochem. Eng. Aspects, 400, 10-17 (2012). https://doi.org/10.1016/j.colsurfa.2012.02.035
  10. Y. Liu, M. Tourbin, S. Lachaize, and P. Guiraud, Silica nanoparticles separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB), Chemosphere, 92, 681-687 (2013). https://doi.org/10.1016/j.chemosphere.2013.03.048
  11. C. Y. Hu, S. L. Lo, C. M. Li, and W. H. Kuan, Treating chemical mechanical polishing (CMP) wastewater by electro-coagulation-flotation process by surfactant, J. Hazard Mater., A120, 15-20 (2005).
  12. C.Y. Lien and J.C. Liu, Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation. J. Environ. Eng., 132, 51-57 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(51)
  13. S.H. Wu, C.Y. Mou, and H.P. Lin, Synthesis of mesoporous silica nanoparticles, Chem. Soc. Rev., 42, 3862-3875 (2013). https://doi.org/10.1039/c3cs35405a
  14. W. Wang, B. Gu, L. Liang, and W. A. Hamilton, Adsorption and structural arrangement of cetyltrimethylammonium cations at the silica nanoparticles-water interface, J. Phys. Chem. B, 108, 17477-17483 (2004). https://doi.org/10.1021/jp048325f
  15. Q. Lan, F. Yang, S. Zhang, S. Liu, J. Xu, and D. Sun, Synergistic effect of silica nanoparticle and cetyltrimethyl ammonium bromide on the stabilization of O/W emulsions, Colloid Surf. A; Physicochem. Eng. Aspects, 302, 126-135 (2007). https://doi.org/10.1016/j.colsurfa.2007.02.010
  16. S. Zhang, Q. Lan, Q. Liu, J. Xu, and D. Sun, Aqueous foams stabilized by Laponite and CTAB, Colloid Surf. A; Physicochem. Eng. Aspects, 317, 406-413 (2008). https://doi.org/10.1016/j.colsurfa.2007.11.010
  17. A. Maestro, E. Guzman, E. Santini, F. Ravera, L. Liggieri, F. Ortega, and R. G. Rubio, Wettability of silica nanoparticle-surfactanct nanocomposite interfacial layers, Soft Matter., 8, 837-843 (2012). https://doi.org/10.1039/C1SM06421E
  18. C. Y. Lien and J. C. Liu, Treatment of polishing wastewater from semiconductor manufacturer by dispersed air flotation, J. Environ. Engineering, 132, 51-57 (2006). https://doi.org/10.1061/(ASCE)0733-9372(2006)132:1(51)
  19. Y. Liu, M. Tourbin, S. Lachaize, and P. Guiraud, Silica nanoparticles separation from water: Aggregation by cetyltrimethylammonium bromide (CTAB), Chemosphere, 92, 681-687 (2013). https://doi.org/10.1016/j.chemosphere.2013.03.048