DOI QR코드

DOI QR Code

Conversion-Alloying Anode Materials for Na-ion Batteries: Recent Progress, Challenges, and Perspective for the Future

  • Kim, Joo-Hyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST)) ;
  • Kim, Do Kyung (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • Received : 2018.04.20
  • Accepted : 2018.06.08
  • Published : 2018.07.31

Abstract

Rechargeable lithium-ion batteries (LIBs) have been rapidly expanding from IT based applications to uses in electric vehicles (EVs), smart grids, and energy storage systems (ESSs), all of which require low cost, high energy density and high power density. The increasing demand for LIBs has resulted in increasing price of the lithium source, which is a major obstacle to wider application. To date, the possible depletion of lithium resources has become relevant, giving rise to the interest in Na-ion batteries (NIBs) as promising alternatives to LIBs. A lot of transition metal compounds based on conversion-alloying reaction have been extensively investigated to meet the requirement for the anodes with high energy density and long life-time. In-depth understanding the electrochemical reaction mechanisms for the transition metal compounds makes it promising negative anode for NIBs and provides feasible strategy for low cost and large-scale energy storage system in the near future.

Keywords

References

  1. B. Dunn, H. Kamath, and J. M. Tarascon, "Electrical Energy Storage for the Grid: a Battery of Choices," Science, 334 [6058] 928-35 (2011). https://doi.org/10.1126/science.1212741
  2. M. Armand and J. M. Tarascon, "Building Better Batteries," Nature, 451 [7179] 652-57 (2008). https://doi.org/10.1038/451652a
  3. G. E. Blomgren, "The Development and Future of Lithium Ion Batteries," J. Electrochem. Soc., 164 [1] A5019-25 (2017). https://doi.org/10.1149/2.0251701jes
  4. M. Lazzari and B. Scrosati, "Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes," J. Electrochem. Soc., 127 [3] 773-74 (1980). https://doi.org/10.1149/1.2129753
  5. D. Larcher and J. M. Tarascon, "Towards Greener and More Sustainable Batteries for Electrical Energy Storage," Nat. Chem., 7 [1] 19-29 (2015). https://doi.org/10.1038/nchem.2085
  6. B. Swain, "Cost Effective Recovery of Lithium from Lithium Ion Battery by Reverse Osmosis and Precipitation: a Perspective," J. Chem. Technol. Biotechnol., 93 [2] 311-19 (2018). https://doi.org/10.1002/jctb.5332
  7. S. W. Kim, D. H. Seo, X. H. Ma, G. Ceder, and K. Kang, "Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries," Adv. Energy Mater., 2 [7] 710-21 (2012). https://doi.org/10.1002/aenm.201200026
  8. N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research Development on Sodium-Ion Batteries," Chem. Rev., 114 [23] 11636-82 (2014). https://doi.org/10.1021/cr500192f
  9. V. Palomares, P. Serras, I. Villaluenga, K. B. Hueso, J. Carretero-Gonzalez, and T. Rojo, "Na-Ion Batteries, Recent Advances and Present Challenges to Become Low Cost Energy Storage Systems," Energy Environ. Sci., 5 [3] 5884-901 (2012). https://doi.org/10.1039/c2ee02781j
  10. P. R. Kumar, Y. H. Jung, S. A. Ahad, and D. K. Kim, "A High Rate and Stable Electrode Consisting of a $Na_3V_2O_{2X}(PO_4)_2F_{3-2X}-rGO$ Composite with a Cellulose Binder for Sodium-Ion Batteries," RSC Adv., 7 [35] 21820-26 (2017). https://doi.org/10.1039/C7RA01047H
  11. P. R. Kumar, Y. H. Jung, and D. K. Kim, "Influence of Carbon Polymorphism towards Improved Sodium Storage Properties of $Na_3V_2O_{2x}(PO_4)_2F_{3-2x}$," J. Solid State Electrochem., 21 [1] 223-32 (2017). https://doi.org/10.1007/s10008-016-3365-6
  12. Y. H. Jung, A. S. Christiansen, R. E. Johnsen, P. Norby, and D. K. Kim, "In Situ X-Ray Diffraction Studies on Structural Changes of a P2 Layered Material during Electrochemical Desodiation/Sodiation," Adv. Funct. Mater., 25 [21] 3227-37 (2015). https://doi.org/10.1002/adfm.201500469
  13. J. Song, J. Yang, M. H. Alfaruqi, W. Park, S. Park, S. Kim, J. Jo, and J. Kim, "Pyro-Synthesis of $Na_2FeP_2O_7$ Nano-plates as Cathode for Sodium-ion Batteries with Long Cycle Stability," J. Korean Ceram. Soc., 53 [4] 406-10 (2016). https://doi.org/10.4191/kcers.2016.53.4.406
  14. J. Y. Hwang, S. T. Myung, and Y. K. Sun, "Sodium-Ion Batteries: Present and Future," Chem. Soc. Rev., 46 [12] 3529-614 (2017). https://doi.org/10.1039/C6CS00776G
  15. Y. Guo, Y. Wei, H. Li, and T. Zhai, "Layer Structured Materials for Advanced Energy Storage and Conversion," Small, 13 [45] 1701649 (2017). https://doi.org/10.1002/smll.201701649
  16. H. Y. Kang, Y. C. Liu, K. Z. Cao, Y. Zhao, L. F. Jiao, Y. J. Wang, and H. T. Yuan, "Update on Anode Materials for Na-Ion Batteries," J. Mater. Chem. A, 3 [35] 17899-913 (2015). https://doi.org/10.1039/C5TA03181H
  17. Y. Wen, K. He, Y. J. Zhu, F. D. Han, Y. H. Xu, I. Matsuda, Y. Ishii, J. Cumings, and C. S. Wang, "Expanded Graphite as Superior Anode for Sodium-Ion Batteries," Nat. Commun., 5 5033 (2014). https://doi.org/10.1038/ncomms6033
  18. E. Buiel, and J. R. Dahn, "Li-Insertion in Hard Carbon Anode Materials for Li-Ion Batteries," Electrochim. Acta, 45 [1-2] 121-30 (1999). https://doi.org/10.1016/S0013-4686(99)00198-X
  19. V. L. Chevrier and G. Ceder, "Challenges for Na-Ion Negative Electrodes," J. Electrochem. Soc., 158 [9] A1011-14 (2011). https://doi.org/10.1149/1.3607983
  20. W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, and L. Hu, "Na-Ion Battery Anodes: Materials and Electrochemistry," Acc. Chem. Res., 49 [2] 231-40 (2016). https://doi.org/10.1021/acs.accounts.5b00482
  21. Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High-Capacity Anode Materials for Sodium-Ion Batteries," Chem. - Eur. J., 20 [38] 11980-92 (2014). https://doi.org/10.1002/chem.201402511
  22. S. Komaba, Y. Matsuura, T. Ishikawa, N. Yabuuchi, W. Murata, and S. Kuze, "Redox Reaction of Sn-Polyacrylate Electrodes in Aprotic Na Cell," Electrochem. Commun., 21 65-8 (2012). https://doi.org/10.1016/j.elecom.2012.05.017
  23. J. W. Wang, X. H. Liu, S. X. Mao, and J. Y. Huang, "Microstructural Evolution of Tin Nanoparticles during In Situ Sodium Insertion and Extraction," Nano Lett., 12 [11] 5897-902 (2012). https://doi.org/10.1021/nl303305c
  24. S. A. Liu, J. K. Feng, X. F. Bian, Y. T. Qian, J. Liu, and H. Xu, "Nanoporous Germanium as High-Capacity Lithium-Ion Battery Anode," Nano Energy, 13 651-57 (2015). https://doi.org/10.1016/j.nanoen.2015.03.039
  25. X. W. Li, Z. B. Yang, Y. J. Fu, L. Qiao, D. Li, H. W. Yue, and D. Y. He, "Germanium Anode with Excellent Lithium Storage Performance in a Germanium/Lithium-Cobalt Oxide Lithium-Ion Battery," ACS Nano, 9 [2] 1858-67 (2015). https://doi.org/10.1021/nn506760p
  26. L. Baggetto, E. J. M. Hensen, and P. H. L. Notten, "In situ X-ray Absorption Spectroscopy of Germanium Evaporated Thin Film Electrodes," Electrochim. Acta, 55 [23] 7074-79 (2010). https://doi.org/10.1016/j.electacta.2010.06.087
  27. L. Baggetto and P. H. L. Notten, "Lithium-Ion (De)Insertion Reaction of Germanium Thin-Film Electrodes: An Electrochemical and In Situ XRD Study," J. Electrochem. Soc., 156 [3] A169-A75 (2009). https://doi.org/10.1149/1.3055984
  28. X. T. Lu, E. R. Adkins, Y. He, L. Zhong, L. L. Luo, S. X. Mao, C. M. Wang, and B. A. Korgel, "Germanium as a Sodium Ion Battery Material: In Situ TEM Reveals Fast Sodiation Kinetics with High Capacity," Chem. Mater., 28 [4] 1236-42 (2016). https://doi.org/10.1021/acs.chemmater.6b00200
  29. J. W. Wang, X. H. Liu, S. X. Mao, and J. Y. Huang, "Microstructural Evolution of Tin Nanoparticles during in situ Sodium Insertion and Extraction," Nano Lett., 12 [11] 5897-902 (2012). https://doi.org/10.1021/nl303305c
  30. F. Wan, J. Z. Guo, X. H. Zhang, J. P. Zhang, H. Z. Sun, Q. Y. Yan, D. X. Han, L. Niu, and X. L. Wu, "In Situ Binding Sb Nanospheres on Graphene via Oxygen Bonds as Superior Anode for Ultrafast Sodium-Ion Batteries," ACS Appl. Mater. Interfaces, 8 [12] 7790-99 (2016). https://doi.org/10.1021/acsami.5b12242
  31. X. L. Zhou, Y. R. Zhong, M. Yang, M. Hu, J. P. Wei, and Z. Zhou, "Sb Nanoparticles Decorated N-rich Carbon Nanosheets as Anode Materials for Sodium Ion Batteries with Superior Rate Capability and Long Cycling Stability," Chem. Commun., 50 [85] 12888-91 (2014). https://doi.org/10.1039/C4CC05989A
  32. L. Luo, H. Qiao, W. Z. Xu, D. W. Li, J. D. Zhu, C. Chen, Y. Lu, P. Zhu, X. W. Zhang, and Q. F. Wei, "Tin Nanoparticles Embedded in Ordered Mesoporous Carbon as High-Performance Anode for Sodium-Ion Batteries," J. Solid State Electrochem., 21 [5] 1385-95 (2017). https://doi.org/10.1007/s10008-016-3501-3
  33. Q. Q. Yang, J. Zhou, G. Q. Zhang, C. Guo, M. Li, Y. C. Zhu, and Y. T. Qian, "Sb Nanoparticles Uniformly Dispersed in 1-D N-doped Porous Carbon as Anodes for LiIon and Na-Ion Batteries," J. Mater. Chem. A, 5 [24] 12144-48 (2017). https://doi.org/10.1039/C7TA03060F
  34. Y. X. Wang, Y. G. Lim, M. S. Park, S. L. Chou, J. H. Kim, H. K. Liu, S. X. Dou, and Y. J. Kim, "Ultrafine $SnO_2$ Nanoparticle Loading onto Reduced Graphene Oxide as Anodes for Sodium-Ion Batteries with Superior Rate and Cycling Performances," J. Mater. Chem. A, 2 [2] 529-34 (2014). https://doi.org/10.1039/C3TA13592F
  35. H. W. Song, N. Li, H. Cui, and C. X. Wang, "Enhanced Capability and Cyclability of $SnO_2$-Graphene Oxide Hybrid Anode by Firmly Anchored $SnO_2$ Quantum Dots," J. Mater. Chem. A, 1 [26] 7558-62 (2013). https://doi.org/10.1039/c3ta11442b
  36. J. Patra, H. C. Chen, C. H. Yang, C. T. Hsieh, C. Y. Su, and J. K. Chang, "High Dispersion of 1-nm $SnO_2$ Particles between Graphene Nanosheets Constructed Using Supercritical $CO_2$ Fluid for Sodium-Ion Battery Anodes," Nano Energy, 28 124-34 (2016). https://doi.org/10.1016/j.nanoen.2016.08.044
  37. R. S. Kalubarme, J. Y. Lee, and C. J. Park, "Carbon Encapsulated Tin Oxide Nanocomposites: An Efficient Anode for High Performance Sodium-Ion Batteries," ACS Appl. Mater. Interfaces, 7 [31] 17226-37 (2015). https://doi.org/10.1021/acsami.5b04178
  38. X. Xie, S. Chen, B. Sun, C. Wang, and G. Wang, "3D Networked Tin Oxide/Graphene Aerogel with a Hierarchically Porous Architecture for High-Rate Performance Sodium-Ion Batteries," ChemSusChem, 8 [17] 2948-55 (2015). https://doi.org/10.1002/cssc.201500149
  39. Z. D. Huang, H. S. Hou, G. Q. Zou, J. Chen, Y. Zhang, H. X. Liao, S. M. Li, and X. B. Ji, "3D Porous Carbon Encapsulated $SnO_2$ Nanocomposite for Ultrastable Sodium Ion Batteries," Electrochim. Acta, 214 156-64 (2016). https://doi.org/10.1016/j.electacta.2016.08.040
  40. G. Z. Wang, J. M. Feng, L. Dong, X. F. Li, and D. J. Li, "$SnO_2$ Particles Anchored on N-Doped Graphene Surface as Sodium-Ion Battery Anode with Enhanced Electrochemical Capability," Appl. Surf. Sci., 396 269-77 (2017). https://doi.org/10.1016/j.apsusc.2016.10.109
  41. H. S. Hou, M. J. Jing, Y. C. Yang, Y. Zhang, W. X. Song, X. M. Yang, J. Chen, Q. Y. Chen, and X. B. Ji, "Antimony Nanoparticles Anchored on Interconnected Carbon Nanofibers Networks as Advanced Anode Material for Sodium-Ion Batteries," J. Power Sources, 284 227-35 (2015). https://doi.org/10.1016/j.jpowsour.2015.03.043
  42. D. H. Nam, K. S. Hong, S. J. Lim, M. J. Kim, and H. S. Kwon, "High-Performance $Sb/Sb_2O_3$ Anode Materials Using a Polypyrrole Nanowire Network for Na-Ion Batteries," Small, 11 [24] 2885-92 (2015). https://doi.org/10.1002/smll.201500491
  43. K. S. Hong, D. H. Nam, S. J. Lim, D. Sohn, T. H. Kim, and H. Kwon, "Electrochemically Synthesized Sb/Sb2O3 Composites as High-Capacity Anode Materials Utilizing a Reversible Conversion Reaction for Na-Ion Batteries," ACS Appl. Mater. Interface, 7 [31] 17264-71 (2015). https://doi.org/10.1021/acsami.5b04225
  44. G. Z. Wang, J. M. Feng, L. Dong, X. F. Li, and D. J. Li, "Antimony (IV) Oxide Nanorods/Reduced Graphene Oxide as the Anode Material of Sodium-ion Batteries with Excellent Electrochemical Performance," Electrochim. Acta, 240 203-14 (2017). https://doi.org/10.1016/j.electacta.2017.04.088
  45. J. Fei, Y. L. Cui, J. Y. Li, Z. W. Xu, J. Yang, R. Y. Wang, Y. Y. Cheng, and J. F. Hang, "A Flexible $Sb_2O_3$/Carbon Cloth Composite as a Free-Standing High Performance Anode for Sodium Ion Batteries," Chem. Commun., 53 [98] 13165-67 (2017). https://doi.org/10.1039/C7CC06945F
  46. M. J. Hu, Y. Z. Jiang, W. P. Sun, H. T. Wang, C. H. Jin, and M. Yan, "Reversible Conversion-Alloying of $Sb_2O_3$ as a High-Capacity, High-Rate, and Durable Anode for Sodium Ion Batteries," ACS Appl. Mater. Interface, 6 [21] 19449-55 (2014). https://doi.org/10.1021/am505505m
  47. L. Zhao, H. L. Pan, Y. S. Hu, H. Li, and L. Q. Chen, "Spinel Lithium Titanate ($Li_4Ti_5O_{12}$) as Novel Anode Material for Room-Temperature Sodium-Ion Battery," Chin. Phys. B, 21 [2] (2012).
  48. Y. Sun, L. Zhao, H. L. Pan, X. Lu, L. Gu, Y. S. Hu, H. Li, M. Armand, Y. Ikuhara, L.Q. Chen, and X. J. Huang, "Direct Atomic-Scale Confirmation of Three-Phase Storage Mechanism in $Li_4Ti_5O_{12}$ Anodes for Room-Temperature Sodium-Ion Batteries," Nat. Commun., 4 2878 (2013). https://doi.org/10.1038/ncomms3878
  49. P. Senguttuvan, G. Rousse, V. Seznec, J. M. Tarascon, and M. R. Palacin, "$Na_2Ti_3O_7$: Lowest Voltage Ever Reported Oxide Insertion Electrode for Sodium Ion Batteries," Chem. Mater., 23 [18] 4109-11 (2011). https://doi.org/10.1021/cm202076g
  50. Y. S. Wang, X. Q. Yu, S. Y. Xu, J. M. Bai, R. J. Xiao, Y. S. Hu, H. Li, X. Q. Yang, L. Q. Chen, and X. J. Huang, "A Zero-Strain Layered Metal Oxide as the Negative Electrode for Long-Life Sodium-Ion Batteries," Nat. Commun., 4 [2365] 1-8 (2013).
  51. D. B. S. H. Kim, C. Kim, and J. G. Lee, "Na-Ion Anode Based on $Na(Li,Ti)O_2$ System: Effects of Mg Addition," J. Korean Ceram. Soc., 53 [3] 282-87 (2016). https://doi.org/10.4191/kcers.2016.53.3.282
  52. A. Rudola, K. Saravanan, S. Devaraj, H. Gong, and P. Balaya, "$Na_2Ti_6O_{13}$: A Potential Anode for Grid-Storage Sodium-Ion Batteries," Chem. Commun., 49 [67] 7451-53 (2013). https://doi.org/10.1039/c3cc44381g
  53. M. Shirpour, J. Cabana, and M. Doeff, "New Materials Based on a Layered Sodium Titanate for Dual Electrochemical Na and Li Intercalation Systems," Energy Environ. Sci., 6 [8] 2538-47 (2013). https://doi.org/10.1039/c3ee41037d
  54. R. Alcantara, M. Jaraba, P. Lavela, and J. L. Tirado, "$NiCo_2O_4$ Spinel: First Report on a Transition Metal Oxide for the Negative Electrode of Sodium-Ion Batteries," Chem. Mater., 14 [7] 2847-48 (2002). https://doi.org/10.1021/cm025556v
  55. R. S. Kalubarme, A. I. Inamdar, D. S. Bhange, H. Im, S. W. Gosavi, and C. J. Park, "Nickel-Titanium Oxide as a Novel Anode Material for Rechargeable Sodium-Ion Batteries," J. Mater. Chem. A, 4 [44] 17419-30 (2016). https://doi.org/10.1039/C6TA07306A
  56. S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, and Y. Yamada, "Electrochemical Insertion of Li and Na Ions into Nanocrystalline $Fe_3O_4$ and ${\alpha}-Fe_2O_3$ for Rechargeable Batteries," J. Electrochem. Soc., 157 [1] A60-5 (2010). https://doi.org/10.1149/1.3254160
  57. P. R. Kumar, Y. H. Jung, K. K. Bharathi, C. H. Lim, and D. K. Kim, "High Capacity and Low Cost Spinel $Fe_3O_4$ for the Na-Ion Battery Negative Electrode Materials," Electrochim. Acta, 146 503-10 (2014). https://doi.org/10.1016/j.electacta.2014.09.081
  58. D. S. Li, D. Yan, X. J. Zhang, J. B. Li, T. Lu, and L. K. Pan, "Porous CuO/Reduced Graphene Oxide Composites Synthesized from Metal-Organic Frameworks as Anodes for High-Performance Sodium-Ion Batteries," J. Colloid Interface Sci., 497 350-58 (2017). https://doi.org/10.1016/j.jcis.2017.03.037
  59. G. Longoni, M. Fiore, J. H. Kim, Y. H. Jung, D. K. Kim, C. M. Mari, and R. Ruffo, "$Co_3O_4$ Negative Electrode Material for Rechargeable Sodium Ion Batteries: An Investigation of Conversion Reaction Mechanism and Morphology-Performances Correlations," J. Power Sources, 332 42-50 (2016). https://doi.org/10.1016/j.jpowsour.2016.09.094
  60. S. Meng, D.L. Zhao, L. L. Wu, Z. W. Ding, X. W. Cheng, and T. Hu, "$Fe_2O_3$/Nitrogen-Doped Graphene Nanosheet Nanocomposites as Anode Materials for Sodium-Ion Batteries with Enhanced Electrochemical Performance," J. Alloys Compd., 737 130-35 (2018). https://doi.org/10.1016/j.jallcom.2017.12.077
  61. M. M. Rahman, I. Sultana, Z. Q. Chen, M. Srikanth, L. H. Li, X. J. J. Dai, and Y. Chen, "Ex situ Electrochemical Sodiation/Desodiation Observation of $Co_3O_4$ Anchored Carbon Nanotubes: A High Performance Sodium-Ion Battery Anode Produced by Pulsed Plasma in a Liquid," Nanoscale, 7 [30] 13088-95 (2015). https://doi.org/10.1039/C5NR03335G
  62. X. J. Wang, Y. C. Liu, Y. J. Wang, and L. F. Jiao, "CuO Quantum Dots Embedded in Carbon Nanofibers as Binder-Free Anode for Sodium Ion Batteries with Enhanced Properties," Small, 12 [35] 4865-72 (2016). https://doi.org/10.1002/smll.201601474
  63. S. M. Oh, S. T. Myung, C. S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, and Y. K. Sun, "Advanced $Na[Ni_{0.25}Fe_{0.5}Mn_{0.25}]O_2/C-Fe_3O_4$ Sodium-Ion Batteries Using EMS Electrolyte for Energy Storage," Nano Lett., 14 [3] 1620-26 (2014). https://doi.org/10.1021/nl500077v
  64. J. Pan, N. N. Wang, Y. L. Zhou, X. F. Yang, W. Y. Zhou, Y. T. Qian, and J. Yang, "Simple Synthesis of a Porous $Sb/Sb_2O_3$ Nanocomposite for a High-Capacity Anode Material in Na-Ion Batteries," Nano Res., 10 [5] 1794-803 (2017). https://doi.org/10.1007/s12274-017-1501-y
  65. D. S. Li, D. Yana, J. Q. Ma, W. Qin, X. J. Zhang, T. Lu, and L. K. Pan, "One-Step Microwave-Assisted Synthesis of $Sb_2O_3$/Reduced Graphene Oxide Composites as Advanced Anode Materials for Sodium-Ion Batteries," Ceram. Int., 42 [14] 15634-42 (2016). https://doi.org/10.1016/j.ceramint.2016.07.017
  66. Z. N. Guo, F. Sun, and W. X. Yuan, "Chemical Intercalations in Layered Transition Metal Chalcogenides: Syntheses, Structures, and Related Properties," Cryst. Growth Des., 17 [4] 2238-53 (2017). https://doi.org/10.1021/acs.cgd.7b00146
  67. M. Pumera, Z. Sofer, and A. Ambrosi, "Layered Transition Metal Dichalcogenides for Electrochemical Energy Generation and Storage," J. Mater. Chem. A, 2 [24] 8981-87 (2014). https://doi.org/10.1039/C4TA00652F
  68. L. Wu, X. H. Hu, J. F. Qian, F. Pei, F. Y. Wu, R. J. Mao, X. P. Ai, H. X. Yang, and Y. L. Cao, "A Sn-SnS-C Nanocomposite as Anode Host Materials for Na-Ion Batteries," J. Mater. Chem. A, 1 [24] 7181-84 (2013). https://doi.org/10.1039/c3ta10920h
  69. L. Wu, H. Y. Lu, L. F. Xiao, J. F. Qian, X. P. Ai, H. X. Yang, and Y. L. Cao, "A Tin(II) Sulfide-Carbon Anode Material Based on Combined Conversion and Alloying Reactions for Sodium-Ion Batteries," J. Mater. Chem. A, 2 [39] 16424-28 (2014). https://doi.org/10.1039/C4TA03365E
  70. T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, and Z. Guo, "Enhanced Sodium-Ion Battery Performance by Structural Phase Transition from Two-Dimensional Hexagonal-$SnS_2$ to Orthorhombic-SnS," ACS Nano, 8 [8] 8323-33 (2014). https://doi.org/10.1021/nn503582c
  71. B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered $SnS_2$-Reduced Graphene Oxide Composite - A High-Capacity, High-Rate, and Long-Cycle Life Sodium-Ion Battery Anode Material," Adv. Mater., 26 [23] 3854-59 (2014). https://doi.org/10.1002/adma.201306314
  72. Y. D. Zhang, P. Y. Zhu, L. L. Huang, J. Xie, S. C. Zhang, G. S. Cao, and X. B. Zhao, "Few-Layered $SnS_2$ on FewLayered Reduced Graphene Oxide as Na-Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability," Adv. Funct. Mater., 25 [3] 481-89 (2015). https://doi.org/10.1002/adfm.201402833
  73. F. Z. Tu, X. Xu, P. Z. Wang, L. Si, X. S. Zhou, and J. C. Bao, "A Few-Layer $SnS_2$/Reduced Graphene Oxide Sandwich Hybrid for Efficient Sodium Storage," J. Phys. Chem. C, 121 [6] 3261-69 (2017). https://doi.org/10.1021/acs.jpcc.6b12692
  74. J. H. Kim, Y. H. Jung, J. H. Yun, P. Ragupathy, and D. K. Kim, "Enhancing the Sequential Conversion-Alloying Reaction of Mixed Sn-S Hybrid Anode for Efficient Sodium Storage by a Carbon Healed Graphene Oxide," Small, 14 [4] 1702605 (2018). https://doi.org/10.1002/smll.201702605
  75. Y. Kim, Y. Kim, Y. Park, Y. N. Jo, Y. J. Kim, N. S. Choi, and K. T. Lee, "SnSe Alloy as a Promising Anode Material for Na-Ion Batteries," Chem. Commun., 51 [1] 50-3 (2015). https://doi.org/10.1039/C4CC06106C
  76. Z. A. Zhang, X. X. Zhao, and J. Li, "SnSe/Carbon Nanocomposite Synthesized by High Energy Ball Milling as an Anode Material for Sodium-Ion and Lithium-Ion Batteries," Electrochim. Acta, 176 1296-301 (2015). https://doi.org/10.1016/j.electacta.2015.07.140
  77. F. Zhang, C. Xia, J. J. Zhu, B. Ahmed, H. F. Liang, D. B. Velusamy, U. Schwingenschlogl, and H. N. Alshareef, "$SnSe_2$ 2D Anodes for Advanced Sodium Ion Batteries," Adv. Energy Mater., 6 [22] 1601188 (2016). https://doi.org/10.1002/aenm.201601188
  78. A. R. Park and C. M. Park, "Cubic Crystal-Structured SnTe for Superior Li- and Na-Ion Battery Anodes," ACS Nano, 11 [6] 6074-84 (2017). https://doi.org/10.1021/acsnano.7b02039
  79. Y. Zhu, P. Nie, L. Shen, S. Dong, Q. Sheng, H. Li, H. Luo, and X. Zhang, "High Rate Capability and Superior Cycle Stability of a Flower-like $Sb_2S_3$ Anode for High-Capacity Sodium Ion Batteries," Nanoscale, 7 [7] 3309-15 (2015). https://doi.org/10.1039/C4NR05242K
  80. S. M. Hwang, J. Kim, Y. Kim, and Y. Kim, "Na-Ion Storage Performance of Amorphous $Sb_2S_3$ Nanoparticles: Anode for Na-Ion Batteries and Seawater Flow Batteries," J. Mater. Chem. A, 4 [46] 17946-51 (2016). https://doi.org/10.1039/C6TA07838A
  81. S. S. Yao, J. Cui, Z. H. Lu, Z .L. Xu, L. Qin, J. Q. Huang, Z. Sadighi, F. Ciucci, and J. K. Kim, "Unveiling the Unique Phase Transformation Behavior and Sodiation Kinetics of 1D van der Waals $Sb_2S_3$ Anodes for Sodium Ion Batteries," Adv. Energy Mater., 7 [8] 1602149 (2017). https://doi.org/10.1002/aenm.201602149
  82. S. Wang, S. Yuan, Y. B. Yin, Y. H. Zhu, X. B. Zhang, and J. M. Yan, "Green and Facile Fabrication of MWNTs@$Sb_2S_3$@PPy Coaxial Nanocables for High-Performance Na-Ion Batteries," Part. Part. Syst. Charact., 33 [8] 493-99 (2016). https://doi.org/10.1002/ppsc.201500227
  83. Y. Zhao and A. Manthiram, "Amorphous $Sb_2S_3$ Embedded in Graphite: A High-Rate, Long-Life Anode Material for Sodium-Ion Batteries," Chem. Commun., 51 [67] 13205-8 (2015). https://doi.org/10.1039/C5CC03825A
  84. D. Y. W. Yu, P. V. Prikhodchenko, C. W. Mason, S. K. Batabyal, J. Gun, S. Sladkevich, A. G. Medvedev, and O. Lev, "High-Capacity Antimony Sulphide Nanoparticle-Decorated Graphene Composite as Anode for Sodium-Ion Batteries," Nat. Commun., 4 2922 (2013). https://doi.org/10.1038/ncomms3922
  85. X. Xiong, G. Wang, Y. Lin, Y. Wang, X. Ou, F. Zheng, C. Yang, J. H. Wang, and M. Liu, "Enhancing Sodium Ion Battery Performance by Strongly Binding Nanostructured $Sb_2S_3$ on Sulfur-Doped Graphene Sheets," ACS Nano, 10 [12] 10953-59 (2016). https://doi.org/10.1021/acsnano.6b05653
  86. W. Luo, A. Calas, C. Tang, F. Li, L. Zhou, and L. Mai, "Ultralong $Sb_2Se_3$ Nanowire-Based Free-Standing Membrane Anode for Lithium/Sodium Ion Batteries," ACS Appl. Mater. Interfaces, 8 [51] 35219-26 (2016). https://doi.org/10.1021/acsami.6b11544
  87. P. Ge, X. Cao, H. Hou, S. Li, and X. Ji, "Rodlike $Sb_2Se_3$ Wrapped with Carbon: The Exploring of Electrochemical Properties in Sodium-Ion Batteries," ACS Appl. Mater. Interfaces, 9 [40] 34979-89 (2017). https://doi.org/10.1021/acsami.7b10886
  88. K. H. Nam, J. H. Choi, and C. M. Park, "Highly Reversible Na-Ion Reaction in Nanostructured $Sb_2Te_3-C$ Composites as Na-Ion Battery Anodes," J. Electrochem. Soc., 164 [9] A2056-64 (2017). https://doi.org/10.1149/2.1161709jes
  89. P. R. Kumar, Y. H. Jung, and D. K. Kim, "High Performance of $MoS_2$ Microflowers with a Water-Based Binder as an Anode for Na-Ion Batteries," RSC Adv., 5 [97] 79845-51 (2015). https://doi.org/10.1039/C5RA16297A
  90. C. B. Zhu, X. K. Mu, P. A. van Aken, Y. Yu, and J. Maier, "Single-Layered Ultrasmall Nanoplates of $MoS_2$ Embedded in Carbon Nanofibers with Excellent Electrochemical Performance for Lithium and Sodium Storage," Angew. Chem., Int. Ed., 53 [8] 2152-56 (2014). https://doi.org/10.1002/anie.201308354
  91. F. E. Niu, J. Yang, N. N. Wang, D. P. Zhang, W. L. Fan, J. Yang, and Y. T. Qian, "$MoSe_2$-Covered N,P-Doped Carbon Nanosheets as a Long-Life and High-Rate Anode Material for Sodium-Ion Batteries," Adv. Funct. Mater., 27 [23] 1700522 (2017). https://doi.org/10.1002/adfm.201700522
  92. K. Zhang, M. Park, L. M. Zhou, G. H. Lee, J. Shin, Z. Hu, S. L. Chou, J. Chen, and Y. M. Kang, "Cobalt-Doped $FeS_2$ Nanospheres with Complete Solid Solubility as a High-Performance Anode Material for Sodium-Ion Batteries," Angew. Chem., Int. Ed., 55 [41] 12822-26 (2016). https://doi.org/10.1002/anie.201607469
  93. W. X. Zhao, C. X. Guo, and C. M. Li, "Lychee-like $FeS_2@FeSe_2$ Core-Shell Microspheres Anode in Sodium Ion Batteries for Large Capacity and Ultralong Cycle Life," J. Mater. Chem. A, 5 [36] 19195-202 (2017). https://doi.org/10.1039/C7TA05931K
  94. Q. Guo, Y. Ma, T. Chen, Q. Xia, M. Yang, H. Xia, and Y. Yu, "Cobalt Sulfide Quantum Dot Embedded N/S-Doped Carbon Nanosheets with Superior Reversibility and Rate Capability for Sodium-Ion Batteries," ACS Nano, 11 [12] 12658-67 (2017). https://doi.org/10.1021/acsnano.7b07132
  95. Y. N. Ko, S. H. Choi, and Y. C. Kang, "Hollow Cobalt Selenide Microspheres: Synthesis and Application as Anode Materials for Na-Ion Batteries," ACS Appl. Mater. Interface, 8 [10] 6449-56 (2016). https://doi.org/10.1021/acsami.5b11963
  96. J. H. Kim, J. H. Yun, and D. K. Kim, "A Robust Approach for Efficient Sodium Storage of $GeS_2$ Hybrid Anode by Electrochemically Driven Amorphization," Adv. Energy Mater., 1703499 (2018).
  97. X. Y. Yu, L. Yu, and X. W. Lou, "Metal Sulfide Hollow Nanostructures for Electrochemical Energy Storage," Adv. Energy Mater., 6 [3] 1501333 (2016). https://doi.org/10.1002/aenm.201501333
  98. X. Huang, Z. Zeng, and H. Zhang, "Metal Dichalcogenide Nanosheets: Preparation, Properties and Applications," Chem. Soc. Rev., 42 [5] 1934-46 (2013). https://doi.org/10.1039/c2cs35387c
  99. X. Rui, H. Tan, and Q. Yan, "Nanostructured Metal Sulfides for Energy Storage," Nanoscale, 6 [17] 9889-924 (2014). https://doi.org/10.1039/C4NR03057E
  100. W. Li, M. Zhou, H. M. Li, K. L. Wang, S. J. Cheng, and K. Jiang, "Carbon-Coated $Sb_2Se_3$ Composite as Anode Material for Sodium Ion Batteries," Electrochem. Commun., 60 74-7 (2015). https://doi.org/10.1016/j.elecom.2015.08.014
  101. J. Park, J. S. Kim, J. W. Park, T. H. Nam, K. W. Kim, J. H. Ahn, G. Wang, and H. J. Ahn, "Discharge Mechanism of $MoS_2$ for Sodium Ion Battery: Electrochemical Measurements and Characterization," Electrochim. Acta, 92 427-32 (2013). https://doi.org/10.1016/j.electacta.2013.01.057
  102. X. S. Song, X. F. Li, Z. M. Bai, B. Yan, D. J. Li, and X. L. Sun, "Morphology-Dependent Performance of Nanostructured $Ni_3S_2/N$ Anode Electrodes for High Performance Sodium Ion Batteries," Nano Energy, 26 533-40 (2016). https://doi.org/10.1016/j.nanoen.2016.06.019
  103. Y. Han, S. Y. Liu, L. Cui, L. Xu, J. Xie, X. K. Xia, W. K. Hao, B. Wang, H. Li, and J. Gao, "Graphene-Immobilized Flower-like $Ni_3S_2$ Nanoflakes as a Stable Binder-Free Anode Material for Sodium-Ion Batteries," Int. J. Miner., Metall. Mater., 25 [1] 88-93 (2018). https://doi.org/10.1007/s12613-018-1550-6
  104. S. Choi, Y. G. Cho, J. Kim, N. S. Choi, H. K. Song, G. Wang, and S. Park, "Mesoporous Germanium Anode Materials for Lithium-Ion Battery with Exceptional Cycling Stability in Wide Temperature Range," Small, 13 [13] 1603045 (2017). https://doi.org/10.1002/smll.201603045
  105. P. R. Abel, Y. M. Lin, T. de Souza, C. Y. Chou, A. Gupta, J. B. Goodenough, G. S. Hwang, A. Heller, and C. B. Mullins, "Nanocolumnar Germanium Thin Films as a High-Rate Sodium-Ion Battery Anode Material," J. Phys. Chem. C, 117 [37] 18885-90 (2013). https://doi.org/10.1021/jp407322k
  106. M. Mayo, K. J. Griffith, C. J. Pickard, and A. J. Morris, "Ab Initio Study of Phosphorus Anodes for Lithium- and Sodium-Ion Batteries," Chem. Mater., 28 [7] 2011-21 (2016). https://doi.org/10.1021/acs.chemmater.5b04208
  107. M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara, K. Tokiwa, X. F. Yu, H. Ushiyama, K. Yamashita, J. Y. Son, Y. T. Cui, H. Oji, and S. Komaba, "Black Phosphorus as a High-Capacity, High-Capability Negative Electrode for Sodium-Ion Batteries: Investigation of the Electrode/Interface," Chem. Mater., 28 [6] 1625-35 (2016). https://doi.org/10.1021/acs.chemmater.5b03524
  108. X. L. Fan, J. F. Mao, Y. J. Zhu, C. Luo, L. M. Suo, T. Gao, F. D. Han, S. C. Liou, and C. S. Wang, "Superior Stable Self-Healing $SnP_3$ Anode for Sodium-Ion Batteries," Adv. Energy Mater., 5 [18] 1500174 (2015). https://doi.org/10.1002/aenm.201500174
  109. Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N. S. Choi, Y. S. Jung, J. H. Ryu, S. M. Oh, and K. T. Lee, "Tin Phosphide as a Promising Anode Material for Na-Ion Batteries," Adv. Mater., 26 [24] 4139-44 (2014). https://doi.org/10.1002/adma.201305638
  110. C. Wu, P. Kopold, P. A. van Aken, J. Maier, and Y. Yu, "High Performance Graphene/$Ni_2P$ Hybrid Anodes for Lithium and Sodium Storage through 3D Yolk-Shell-Like Nanostructural Design," Adv. Mater., 29 [3] 1604015 (2017). https://doi.org/10.1002/adma.201604015
  111. X. J. Wang, K. Chen, G. Wang, X. J. Liu, and H. Wang, "Rational Design of Three-Dimensional Graphene Encapsulated with Hollow FeP@Carbon Nanocomposite as Outstanding Anode Material for Lithium Ion and Sodium Ion Batteries," ACS Nano, 11 [11] 11602-16 (2017). https://doi.org/10.1021/acsnano.7b06625
  112. X. L. Fan, T. Gao, C. Luo, F. Wang, J. K. Hu, and C. S. Wang, "Superior Reversible Tin Phosphide-Carbon Spheres for Sodium Ion Battery Anode," Nano Energy, 38 350-57 (2017). https://doi.org/10.1016/j.nanoen.2017.06.014
  113. L. B. Ma, P. J. Yan, S. K. Wu, G. Y. Zhu, and Y. L. Shen, "Engineering Tin Phosphides@Carbon Yolk-Shell Nanocube Structures as a Highly Stable Anode Material for Sodium-Ion Batteries," J. Mater. Chem. A, 5 [32] 16994-7000 (2017). https://doi.org/10.1039/C7TA04900E
  114. Q. Li, Z. Q. Li, Z. W. Zhang, C. X. Li, J. Y. Ma, C. X. Wang, X. L. Ge, S. H. Dong, and L. W. Yin, "Low-Temperature Solution-Based Phosphorization Reaction Route to $Sn_4P_3$/Reduced Graphene Oxide Nanohybrids as Anodes for Sodium Ion Batteries," Adv. Energy Mater., 6 [15] 1600376 (2016). https://doi.org/10.1002/aenm.201600376
  115. W. J. Li, S. L. Chou, J. Z. Wang, J. H. Kim, H. K. Liu, and S. X. Dou, "$Sn_{4+x}P_3$ @ Amorphous Sn-P Composites as Anodes for Sodium-Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability," Adv. Mater., 26 [24] 4037-42 (2014). https://doi.org/10.1002/adma.201400794
  116. Z. D. Huang, H. S. Hou, C. Wang, S. M. Li, Y. Zhang, and X. B. Ji, "Molybdenum Phosphide: A Conversion-type Anode for Ultralong-Life Sodium-Ion Batteries," Chem. Mater., 29 [17] 7313-22 (2017). https://doi.org/10.1021/acs.chemmater.7b02193
  117. F. Han, C. Y. J. Tan, and Z. Q. Gao, "Improving the Specific Capacity and Cyclability of Sodium-Ion Batteries by Engineering a Dual-Carbon Phase-Modified Amorphous and Mesoporous Iron Phosphide," ChemElectroChem, 3 [7] 1054-62 (2016). https://doi.org/10.1002/celc.201600101
  118. W. J. Zhang, M. Dahbi, S. Amagasa, Y. Yamada, and S. Komaba, "Iron Phosphide as Negative Electrode Material for Na-Ion Batteries," Electrochem. Commun., 69 11-4 (2016). https://doi.org/10.1016/j.elecom.2016.05.005
  119. Z. Q. Li, L. Y. Zhang, X. L. Ge, C. X. Li, S. H. Dong, C. X. Wang, and L. W. Yin, "Core-Shell Structured CoP/FeP Porous Microcubes Interconnected by Reduced Graphene Oxide as High Performance Anodes for Sodium Ion Batteries," Nano Energy, 32 494-502 (2017). https://doi.org/10.1016/j.nanoen.2017.01.009
  120. K. Zhang, M. Park, J. Zhang, G. H. Lee, J. Shin, and Y. M. Kang, "Cobalt Phosphide Nanoparticles Embedded in Nitrogen-Doped Carbon Nanosheets: Promising Anode Material with High Rate Capability and Long Cycle Life for Sodium-Ion Batteries," Nano Res., 10 [12] 4337-50 (2017). https://doi.org/10.1007/s12274-017-1649-5
  121. X. L. Ge, Z. Q. Li, and L. W. Yin, "Metal-Organic Frameworks Derived Porous Core/ShellCoP@C Polyhedrons Anchored on 3D Reduced Graphene Oxide Networks as Anode for Sodium-Ion Battery," Nano Energy, 32 117-24 (2017). https://doi.org/10.1016/j.nanoen.2016.11.055
  122. M. P. Fan, Y. Chen, Y. H. Xie, T. Z. Yang, X. W. Shen, N. Xu, H. Y. Yu, and C. L. Yan, "Half-Cell and Full-Cell Applications of Highly Stable and Binder-Free Sodium Ion Batteries Based on $Cu_3P$ Nanowire Anodes," Adv. Funct. Mater., 26 [28] 5019-27 (2016). https://doi.org/10.1002/adfm.201601323
  123. S. O. Kim and A. Manthiram, "The Facile Synthesis and Enhanced Sodium-Storage Performance of a Chemically Bonded $CuP_2/C$ Hybrid Anode," Chem. Commun., 52 [23] 4337-40 (2016). https://doi.org/10.1039/C5CC10585D
  124. Y. Y. Lu, P. F. Zhou, K. X. Lei, Q. Zhao, Z. L. Tao, and J. Chen, "Selenium Phosphide ($Se_4P_4$) as a New and Promising Anode Material for Sodium-Ion Batteries," Adv. Energy Mater., 7 [7] 1601973 (2017). https://doi.org/10.1002/aenm.201601973
  125. W. J. Li, S. L. Chou, J. Z. Wang, H. K. Liu, and S. X. Dou, "Simply Mixed Commercial Red Phosphorus and Carbon Nanotube Composite with Exceptionally Reversible Sodium-Ion Storage," Nano Lett., 13 [11] 5480-84 (2013). https://doi.org/10.1021/nl403053v
  126. W. Li, Z. Yang, M. Li, Y. Jiang, X. Wei, X. Zhong, L. Gu, and Y. Yu, "Amorphous Red Phosphorus Embedded in Highly Ordered Mesoporous Carbon with Superior Lithium and Sodium Storage Capacity," Nano Lett., 16 [3] 1546-53 (2016). https://doi.org/10.1021/acs.nanolett.5b03903
  127. Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N. S. Choi, Y. S. Jung, J. H. Ryu, S. M. Oh, and K. T. Lee, "Tin Phosphide as a Promising Anode Material for Na-Ion Batteries," Adv. Mater., 26 [24] 4139-44 (2014). https://doi.org/10.1002/adma.201305638
  128. J. Liu, P. Kopold, C. Wu, P. A. van Aken, J. Maier, and Y. Yu, "Uniform Yolk-Shell $Sn_4P_3@C$ Nanospheres as High-Capacity and Cycle-Stable Anode Materials for Sodium-Ion Batteries," Energy Environ. Sci., 8 [12] 3531-38 (2015). https://doi.org/10.1039/C5EE02074C
  129. J. F. Qian, Y. Xiong, Y. L. Cao, X. P. Ai, and H. X. Yang, "Synergistic Na-Storage Reactions in $Sn_4P_3$ as a High-Capacity, Cycle-stable Anode of Na-Ion Batteries," Nano Lett., 14 [4] 1865-69 (2014). https://doi.org/10.1021/nl404637q

Cited by

  1. 나트륨이차전지용 전환반응 음극 소재 기술 동향 vol.22, pp.1, 2018, https://doi.org/10.5229/jkes.2019.22.1.22
  2. Superior electrochemical sodium storage of V4P7 nanoparticles as an anode for rechargeable sodium-ion batteries vol.55, pp.22, 2018, https://doi.org/10.1039/c8cc09184f
  3. Enhancing the Electrochemical Performance of SbTe Bimetallic Anodes for High-Performance Sodium-Ion Batteries: Roles of the Binder and Carbon Support Matrix vol.9, pp.8, 2019, https://doi.org/10.3390/nano9081134
  4. Emergence of rechargeable seawater batteries vol.7, pp.40, 2018, https://doi.org/10.1039/c9ta08321a
  5. Solvated Ion Intercalation in Graphite: Sodium and Beyond vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.00432
  6. A Stable Lead (II) Oxide-Carbon Composite Anode Candidate for Secondary Lithium Batteries vol.167, pp.6, 2018, https://doi.org/10.1149/1945-7111/ab8116
  7. FeTiO 3 as Anode Material for Sodium‐Ion Batteries: from Morphology Control to Decomposition vol.7, pp.7, 2020, https://doi.org/10.1002/celc.202000150
  8. DFT-Guided Design and Fabrication of Carbon-Nitride-Based Materials for Energy Storage Devices: A Review vol.13, pp.1, 2018, https://doi.org/10.1007/s40820-020-00522-1
  9. N-doped C@ZnSe as a low cost positive electrode for aluminum-ion batteries: Better electrochemical performance with high voltage platform of ~1.8 V and new reaction mechanism vol.370, pp.None, 2021, https://doi.org/10.1016/j.electacta.2021.137790
  10. The rational design of inorganic and organic material based nanocomposite hybrids as Na-ion battery electrodes vol.2, pp.15, 2018, https://doi.org/10.1039/d1ma00490e
  11. Ultra-long cycle life of flexible Sn anode using DME electrolyte vol.871, pp.None, 2021, https://doi.org/10.1016/j.jallcom.2021.159549
  12. Boron-doped Sb/SbO2@rGO composites with tunable components and enlarged lattice spacing for high-rate sodium-ion batteries vol.54, pp.31, 2018, https://doi.org/10.1088/1361-6463/abfdd8
  13. Room-Temperature Synthesis and Stable Na-ion Storage Performance of Two-Dimensional Mixed Lead-Bismuth Oxychloride vol.125, pp.32, 2021, https://doi.org/10.1021/acs.jpcc.1c04463