DOI QR코드

DOI QR Code

Growth Behavior of Thermally Grown Oxide Layer with Bond Coat Species in Thermal Barrier Coatings

  • Jung, Sung Hoon (School of Materials Science and Engineering, Changwon National University) ;
  • Jeon, Soo Hyeok (School of Materials Science and Engineering, Changwon National University) ;
  • Park, Hyeon-Myeong (School of Materials Science and Engineering, Changwon National University) ;
  • Jung, Yeon Gil (School of Materials Science and Engineering, Changwon National University) ;
  • Myoung, Sang Won (Corporate R&D Institute, Doosan Heavy Industries and Construction) ;
  • Yang, Byung Il (Corporate R&D Institute, Doosan Heavy Industries and Construction)
  • Received : 2018.03.07
  • Accepted : 2018.05.29
  • Published : 2018.07.31

Abstract

The effects of bond coat species on the growth behavior of thermally grown oxide (TGO) layer in thermal barrier coatings (TBCs) was investigated through furnace cyclic test (FCT). Two types of feedstock powder with different particle sizes and distributions, AMDRY 962 and AMDRY 386-4, were used to prepare the bond coat, and were formed using air plasma spray (APS) process. The top coat was prepared by APS process using zirconia based powder containing 8 wt% yttria. The thicknesses of the top and bond coats were designed and controlled at 800 and $200{\mu}m$, respectively. Phase analysis was conducted for TBC specimens with and without heat treatment. FCTs were performed for TBC specimens at $1121^{\circ}C$ with a dwell time of 25 h, followed by natural air cooling for 1 h at room temperature. TBC specimens with and without heat treatment showed sound conditions for the AMDRY 962 bond coat and AMDRY 386-4 bond coat in FCTs, respectively. The growth behavior of TGO layer followed a parabolic mode as the time increased in FCTs, independent of bond coat species. The influences of bond coat species and heat treatment on the microstructural evolution, interfacial stability, and TGO growth behavior in TBCs are discussed.

Keywords

References

  1. D. R. Clarke and S. R. Phillpot, "Thermal Barrier Coating Materials," Mater. Today, 8 [6] 22-9 (2005). https://doi.org/10.1016/S1369-7021(05)70934-2
  2. R. VaBen, M. O. Jarligo, T. Steinke, D. E. Mack, and D. Stover, "Overview on Advanced Thermal Barrier Coatings," Surf. Coat. Technol., 205 [4] 938-42 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.151
  3. M. Gell, E. Jordan, K. Vaidyanathan, K. McCarron, B. Barber, Y. H. Sohn, and V. K. Tolpygo, "Bond Strength, Bond Stress and Spallation Mechanisms of Thermal Barrier Coatings," Surf. Coat. Technol., 120-121 53-60 (1999). https://doi.org/10.1016/S0257-8972(99)00338-2
  4. K. H. Stern, Metallurgical and Ceramic Coatings; p. 194, Chapman and Hall, London, 1996.
  5. S. H. Jung, S. H. Jeon, J. H. Lee, Y. G. Jung, I. S. Kim, and B. G. Choi, "Effects of Composition, Structure Design, and Coating Thickness of Thermal Barrier Coatings on Thermal Barrier Performance," J. Korean Ceram. Soc., 53 [6] 689-99 (2016). https://doi.org/10.4191/kcers.2016.53.6.689
  6. H. Herman, S. Sampath, and R. McCune, "Thermal Spray: Current Status and Future Trends," MRS Bull., 25 [7] 17-25 (2000).
  7. U. Schulz, C. Leyens, K. Fritscher, M. Peters, S. B. Bilge, O. Lavigne, J. M. Dorvaux, M. Poulain, R. Mevrel, and M. Caliez, "Some Recent Trends in Research and Technology of Advanced Thermal Barrier Coatings," Aero. Sci. Technol., 7 [1] 73-80 (2003). https://doi.org/10.1016/S1270-9638(02)00003-2
  8. T. S. Sidhu, S. Prakash, and R. D. Agrawal, "Studies on the Properties of High-Velocity Oxy-Fuel Thermal Spray Coatings for Higher Temperature Applications," Surf. Coat. Technol., 41 [6] 805-23 (2009).
  9. X. Q. Cao, R. VaBen, and D. Stover, "Ceramic Materials for Thermal Barrier Coatings," J. Eur. Ceram. Soc., 24 [1] 1-10 (2004). https://doi.org/10.1016/S0955-2219(03)00129-8
  10. W. Schilke, Advanced Gas Turbine Materials and Coatings; GE Energy, Schenectady, New York, 1991.
  11. T. Bhatia, A. Ozturk, L. Xie, E. H. Jordan, B. M. Cetegen, M. Gell, X. Ma, and N. P. Padture, "Mechanisms of Ceramic Coating Deposition in Solution-Precursor Plasma Spray," J. Mater. Res., 17 [9] 2363-72 (2002). https://doi.org/10.1557/JMR.2002.0346
  12. L. Xie, X. Ma, E. H. Jordan, N. P. Padture, T. D. Xiao, and M. Gell, "Identification of Coating Deposition Mechanisms in the Solution-Precursor Plasma-Spray Process Using Model Spray Experiments," Mater. Sci. Eng., A, 362 [1-2] 204-12 (2003). https://doi.org/10.1016/S0921-5093(03)00617-8
  13. K. W. Schlichting, N. P. Padture, E. H. Jordan, and M. Gell, "Failure Modes in Plasma-Sprayed Thermal Barrier Coatings," Mater. Sci. Eng., A, 342 [1-2] 120-30 (2003). https://doi.org/10.1016/S0921-5093(02)00251-4
  14. A. Rabiei and A. G. Evans, "Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings," Acta Mater., 48 [15] 3963-76 (2000). https://doi.org/10.1016/S1359-6454(00)00171-3
  15. N. P. Padture, K. W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. H. Jordan, M. Gell, S. Jiang, T. D. Xiao, P. R. Strutt, E. Garcia, P. Miranzo, and M. I. Osendi, "Towards Durable Thermal Barrier Coatings with Novel Microstructures Deposited by Solution-Precursor Plasma Spray," Acta Mater., 49 [12] 2251-57 (2001). https://doi.org/10.1016/S1359-6454(01)00130-6
  16. B. Barber, E. Jordan, M. Gell, and A. Geary, "Assessment of Damage Accumulation in Thermal Barrier Coatings using a Fluorescent Dye Infiltration Technique," J. Therm. Spray Technol., 8 [1] 79-86 (1999). https://doi.org/10.1361/105996399770350601
  17. R. A. Miller and C. E. Lowell, "Failure Mechanisms of Thermal Barrier Coatings Exposed to Elevated Temperatures," Thin Solid Films, 95 [3] 265-73 (1982). https://doi.org/10.1016/0040-6090(82)90019-0
  18. W. J. Brindley and R. A. Miller, "Thermal Barrier Coating Life and Isothermal Oxidation of Low-Pressure Plasma-Sprayed Bond Coat Alloys," Surf. Coat. Technol., 43-44 446-57 (1990). https://doi.org/10.1016/0257-8972(90)90096-U
  19. E. Tzimas, H. Mullejans, S. D. Peteves, J. Bressers, and W. Stamm, "Failure of Thermal Barrier Coating Systems under Cyclic Thermomechanical Loading," Acta Mater., 48 [18-19] 4699-707 (2000). https://doi.org/10.1016/S1359-6454(00)00260-3
  20. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  21. J. C. Jang and S. C. Choi, "Numerical Simulation for Residual Stress Distributions of Thermal Barrier Coatings by High Temperature Creep in Thermally Grown Oxide," J. Korean Ceram. Soc., 43 [8] 479-85 (2006). https://doi.org/10.4191/KCERS.2006.43.8.479
  22. J. C. Jang and S. C. Choi, "Numerical Simulation of Effects of TGO Growth and Asperity Ratio on Residual Stress Distributions in TC-BC-TGO Interface Region for Thermal Barrier Coatings," J. Korean Ceram. Soc., 43 [7] 415-20 (2006). https://doi.org/10.4191/KCERS.2006.43.7.415
  23. I. Taymaz, A. Mimaroglu, E. Avci, V. Ucar, and M. Gur, "Comparison of Thermal Stresses Developed in $Al_2O_3-SG$, $ZrO_2$-(12% Si+Al) and $ZrO_2-SG$ Thermal Barrier Coating Systems with NiAl, NiCrAlY and NiCoCrAlY Interlayer Materials Subjected to Thermal Loading," Surf. Coat. Technol., 116-119 690-93 (1999). https://doi.org/10.1016/S0257-8972(99)00121-8
  24. J. B. Wactman, "Mechanical Properties of Ceramics, an Introductory Survey," Ceram. Bull., 46 [8] 756-61 (1967).
  25. E. Bakan, D. E. Mack, G. Mauer, and R. VaBen, "Gadolinium Zirconate/YSZ Thermal Barrier Coatings: Plasma Spraying, Microstructure, and Thermal Cycling Behavior," J. Am. Ceram. Soc., 97 [12] 4045-51 (2014). https://doi.org/10.1111/jace.13204
  26. R. Vassen, X. Cao, F. Tietz, D. Basu, and D. Stover, "Zirconates as New Materials for Thermal Barrier Coatings," J. Am. Ceram. Soc., 83 [8] 2023-28 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01506.x
  27. T. A. Taylor, "Low Thermal Expansion Bondcoats for Thermal Barrier Coatings", US Patent 7,910,225 B2 (March 22, 2011).
  28. A. Bolcavage, A. Feuerstein, J. Foster, and P. Moore, "Thermal Shock Testing of Thermal Barrier Coating/Bondcoat System," J. Mater. Eng. Perform., 13 [4] 389-97 (2004). https://doi.org/10.1361/10599490419883
  29. W. R. Chen, X. Wu, B. R. Marple, D. R. Nagy, and P. C. Patnaik, "TGO Growth Behavior in TBCs with APS and HVOF Bond Coats," Surf. Coat. Technol., 202 [12] 2677-83 (2008). https://doi.org/10.1016/j.surfcoat.2007.09.042
  30. O. Trunova, T. Beck, R. Herzog, R. W. Steninbrech, and L. Singheiser, "Damage Mechanisms and Lifetime Behavior of Plasma Sprayed Thermal Barrier Coating Systems for Gas Turbines−Part I: Experiments," Surf. Coat. Technol., 202 [20] 5027-32 (2008). https://doi.org/10.1016/j.surfcoat.2008.05.006
  31. M. Daroonparvar, M. MazarAtabaki, M. Yajid, M. Sakhawathussain, M. Asgharifar, and N. M. Yusof, "Microstrutural Characterization of Thermal Barrier Coating on Inconel 617 after High Temperature Oxidation," Metall. Mater. Eng., 19 [2] 95-106 (2013).
  32. D. H. Lee, N. K. Kang, K. S. Lee, H. S. Moon, H. T. Kim, and C. Kim, "Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior," J. Korean Ceram. Soc., 54 [4] 314-22 (2017). https://doi.org/10.4191/kcers.2017.54.4.05
  33. G. Witz, V. Shklover, W. Steurer, S. Bachegowda, and H-Peter Bossmann, "Phase Evolution in Yttria-Stabilized Zirconia Thermal Barrier Coatings Studied by Rietveld Refinement of X-Ray Powder Diffraction Patterns," J. Am. Ceram. Soc., 90 [9] 2935-40 (2007). https://doi.org/10.1111/j.1551-2916.2007.01785.x
  34. U. Schulz and H-Tay Lin, "Advanced Ceramic Coatings and Interfaces II", A Collection of Papers Presented at the 31st International Conference on Advanced Ceramics and Composites. Wiley-InterScience, Florida, USA, 2007.
  35. B. C. Wu, E. Chang, S. F. Chang, and C. H. Chao, "Thermal Cyclic Response of Yttria-Stabilized Zirconia/CoNiCrAlY Thermal Barrier Coatings," Thin Solid Films, 172 [2] 185-96 (1989). https://doi.org/10.1016/0040-6090(89)90648-2