DOI QR코드

DOI QR Code

Synthesis and Characterization of a Ternary Nanocomposite Based on CdSe Decorated Graphene-TiO2 and its Application in the Quantitative Analysis of Alcohol with Reduction of CO2

  • Received : 2018.05.01
  • Accepted : 2018.05.21
  • Published : 2018.07.31

Abstract

In this work, photocatalytic $CO_2$ reduction over a CdSe-graphene-$TiO_2$ nanocomposite has been studied. The obtained material was successfully fabricated via ultrasonic technique. The physical properties of the as-synthesized materials were characterized by some physical techniques. The $TiO_2$ and CdSe dispersed graphene nanocomposite showed excellent results of strong reduction rates of $CO_2$ compared to the results of bare $TiO_2$ and binary CdSe-graphene. An outstanding point of the combination of CdSe-$TiO_2$ and graphene appeared in the form of great photocatalytic reduction capability of $CO_2$. The photocatalytic activity of the asfabricated composite was tested by surveying for the photoreduction of $CO_2$ to alcohol under UV and visible light irradiation, and the obtained results imply that the as-prepared CdSe-graphene-$TiO_2$ nanocomposite is promising to become a potential candidate for the photocatalytic $CO_2$ reduction.

Keywords

References

  1. M. Aresta, A. Dibenedetto, and A. Angelini, "Catalysis for the Valorization of Exhaust Carbon: from $CO_2$ to Chemicals, Materials, and Fuels. Technological Use of $CO_2$," Chem. Rev., 114 [3] 1709-42 (2014). https://doi.org/10.1021/cr4002758
  2. S. C. Roy, O. K. Varghese, M. Paulose, and C. A. Grimes, "Toward Solar Fuels: Photocatalytic Conversion of Carbon Dioxide to Hydrocarbons," ACS Nano, 4 [3] 1259-78 (2010). https://doi.org/10.1021/nn9015423
  3. B. Guo, Y. Geng, B. Franke, H. Hao, Y. Liu, and A. Chiu, "Uncovering China's Transport $CO_2$ Emission Patterns at the Regional Level," Energy Policy, 74 134-46 (2012).
  4. B. C. O'Neill and M. Oppenheimer, "Dangerous Climate Impacts and the Kyoto Protocol," Science, 296 [5575] 1971-72 (2002). https://doi.org/10.1126/science.1071238
  5. S. Solomona, G.-K. Plattnerb, R. Knuttic, and P. Friedlingstein, "Irreversible Climate Change due to Carbon Dioxide Emissions," Proc. Natl. Acad. Sci. U. S. A., 106 [6] 1704-9 (2009). https://doi.org/10.1073/pnas.0812721106
  6. D. Luthi, M. L. Floch, B. Bereiter, T. Blunier, J.-M. Barnola, U. Siegenthaler, D. Raynaud, J. Jouzel, H. Fischer, K. Kawamura, and T. F. Stocker, "High-Resolution Carbon Dioxide Concentration Record 650,000-800,000 Years before Present," Nature, 453 379-82 (2008). https://doi.org/10.1038/nature06949
  7. S. Kiatphuengporn, M. Chareonpanich, and J. Limtrakul, "Effect of Unimodal and Bimodal MCM-41 Mesoporous Silica Supports on Activity of Fe-Cu Catalysts for $CO_2$ Hydrogenation," Chem. Eng. J., 240 527-33 (2014). https://doi.org/10.1016/j.cej.2013.10.090
  8. W. Donphaia, K. Faungnawakij, M. Chareonpanich, and J. Limtrakul, "Effect of Ni-CNTs/Mesocellular Silica Composite Catalysts on Carbon Dioxide Reforming of Methane," Appl. Catal., A, 475 16-26 (2014). https://doi.org/10.1016/j.apcata.2014.01.014
  9. S. N. Habisreutinger, L. Schmidt-Mende, and J. K. Stolarczyk, "Photocatalytic Reduction of $CO_2$ on $TiO_2$ and Other Semiconductors," Angew. Chem., Int. Ed., 52 [29] 7372-408 (2013). https://doi.org/10.1002/anie.201207199
  10. A. Dhakshinamoorthy, S. Navalon, A. Corma, and H. Garcia, "Photocatalytic $CO_2$ Reduction by $TiO_2$ and Related Titanium Containing Solids," Energy Environ. Sci., 5 [11] 9217-33 (2012). https://doi.org/10.1039/c2ee21948d
  11. H. Shi, G. Chen, C. Zhang, and Z. Zou, "Polymeric $g-C_3N_4$ Coupled with $NaNbO_3$ Nanowires toward Enhanced Photocatalytic Reduction of $CO_2$ into Renewable Fuel," ACS Catal., 4 [10] 3637-43 (2014). https://doi.org/10.1021/cs500848f
  12. V. Kumar, N. Labhsetwar, S. Meshram, and S. Rayalu, "Functionalized Fly Ash Based Alumino-Silicates for Capture of Carbon Dioxide," Energy Fuels, 25 [10] 4854-61 (2011). https://doi.org/10.1021/ef201212h
  13. K. Huang, C. L. Sun, and Z. J. Shi, "Transition-Metal-Catalyzed C-C Bond Formation through the Fixation of Carbon Dioxide," Chem. Soc. Rev., 4 [5] 2435-52 (2011).
  14. B. Kumar, M. Llorente, J. Froehlich, T. Dang, A. Sathrum, and C. P. Kubiak, "Photochemical and Photoelectrochemical Reduction of $CO_2$," Annu. Rev. Phys. Chem., 63 541-69 (2012). https://doi.org/10.1146/annurev-physchem-032511-143759
  15. O. K. Varghese, M. Paulose, T. J. LaTempa, and C. A. Grimes, "High-Rate Solar Photocatalytic Conversion of $CO_2$ and Water Vapor to Hydrocarbon Fuels," Nano Lett., 9 [2] 731-37 (2009). https://doi.org/10.1021/nl803258p
  16. S. Wang and X. C. Wang, "Photocatalytic $CO_2$ Reduction by CdS Promoted with a Zeolitic Imidazolate Framework," Appl Catal., B, 162 494-500 (2015). https://doi.org/10.1016/j.apcatb.2014.07.026
  17. T. Inoue, A. Fujishima, S. Konishi, and K. Honda, "Photoelectrocatalytic Reduction of Carbon Dioxide in Aqueous Suspensions of Semiconductor Powders," Nature, 277 637-38 (1979). https://doi.org/10.1038/277637a0
  18. P. W. Huo, Z. Y. Lu, X. L. Liu, X. Gao, J. M. Pan, D. Wu, J. Ying, H. M. Li, and Y. S. Yan, "Preparation Molecular/Ions Imprinted Photocatalysts of $La^{3+}@POPD/TiO_2/Fly-Ash$ Cenospheres: Preferential Photodegradation of TCs Antibiotics," Chem. Eng. J., 198-199 73-80 (2012). https://doi.org/10.1016/j.cej.2012.05.089
  19. X. Nie, G. Y. Li, P. K. Wong, H. J. Zhao, and T. C. An, "Synthesis and Characterization of N-Doped Carbonaceous/$TiO_2$ Composite Photoanodes for Visible-Light Photoelectrocatalytic Inactivation of Escherichia Coli K-12," Catal. Today, 230 67-73 (2014). https://doi.org/10.1016/j.cattod.2013.09.046
  20. J. C. S. Wu, H.-M. Lin, and C.-L. Lai, "Photo Reduction of $CO_2$ to Methanol Using Optical-Fiber Photoreactor," Appl. Catal., A, 296 [2] 194-200 (2005). https://doi.org/10.1016/j.apcata.2005.08.021
  21. Q. D. Truong, T.H. Le, J.-Y. Liu, C.-C. Chung, and Y.-C. Ling, "Synthesis of $TiO_2$ Nanoparticles Using Novel Titanium Oxalate Complex towards Visible Light-Driven Photocatalytic Reduction of $CO_2$ to $CH_3OH$," Appl. Catal., A, 437-438 28-35 (2012). https://doi.org/10.1016/j.apcata.2012.06.009
  22. W. N. Wang, W. An, B. Ramalingam, S. Mukherjee, D. M. Niedzwiedzki, S. Gangopadhyay, and P. Biswas, "Size and Structure Matter: Enhanced $CO_2$ Photoreduction Efficiency by Size-Resolved Ultrafine Pt Nanoparticles on $TiO_2$ Single Crystals," J. Am. Chem. Soc., 134 [27] 11276 (2012). https://doi.org/10.1021/ja304075b
  23. X. Chen, S. Shen, L. Guo, and S. S. Mao, "Semiconductor-Based Photocatalytic Hydrogen Generation," Chem. Rev., 110 [11] 6503-70 (2010). https://doi.org/10.1021/cr1001645
  24. T. Tachikawa, M. Fujitsuka, and T. Majima, "Mechanistic Insight into the $TiO_2$ Photocatalytic Reactions: Design of New Photocatalysts," J. Phys. Chem. C, 111 [14] 5259-75 (2007). https://doi.org/10.1021/jp069005u
  25. Y. Huang, W. K. Ho, S. C. Lee, L. Z. Zhang, G. S. Li, and J. C. Yu, "Effect of Carbon Doping on the Mesoporous Structure of Nanocrystalline Titanium Dioxide and its Solar-Light-Driven Photocatalytic Degradation of NOx," Langmuir, 24 [7] 3510-16 (2008). https://doi.org/10.1021/la703333z
  26. X. F. Yang, J. Chen, L. Gong, M. M. Wu, and J. C. Yu, "Cross-Medal Arrays of Ta-Doped Rutile Titania," J. Am. Chem. Soc., 131 [34] 12048-49 (2009). https://doi.org/10.1021/ja904337x
  27. D. N. Tafen, R. Long, and O. V. Prezhdo, "Dimensionality of Nanoscale $TiO_2$ Determines the Mechanism of Photoinduced Electron Injection from a CdSe Nanoparticle," Nano Lett., 14 [4] 1790-96 (2014). https://doi.org/10.1021/nl404352a
  28. Y. Hassan, C. H. Chuang, Y. Kobayashi, N. Coombs, S. Gorantla, G. A. Botton, M. A.Winnik, C. Burda, and G. D. Scholes, "Synthesis and Optical Properties of Linker-Free $TiO_2/CdSe$ Nanorods," J. Phys. Chem. C, 118 [6] 3347-58 (2014). https://doi.org/10.1021/jp411830u
  29. L. L. Su, J. Lv, H. E. Wang, L. J. Liu, G. Q. Xu, D. M. Wang, Z. X. Zheng, and Y. C. Wu, "Improved Visible Light Photocatalytic Activity of CdSe Modified $TiO_2$ Nanotube Arrays with Different Intertube Spaces," Catal. Lett., 144 [4] 553-60 (2014). https://doi.org/10.1007/s10562-013-1147-7
  30. B. Jiang, X. L. Yang, X. Li, D. Q. Zhang, J. Zhu, and G. S. Li, "Core-Shell Structure $CdS/TiO_2$ for Enhanced Visible-Light-Driven Photocatalytic Organic Pollutants Degradation," J. Sol-Gel Sci. Technol., 66 [3] 504-11 (2013). https://doi.org/10.1007/s10971-013-3038-1
  31. H. M. Choi, I. A. Ji, and J. H. Bang, "Quantum Dot Solar Cells Prepared Using Electrophoretic Deposition," Bull. Korean Chem. Soc., 34 [3] 713-14 (2013). https://doi.org/10.5012/bkcs.2013.34.3.713
  32. Q. Y. Wang, X. C. Yang, L. N. Chi, and M. M. Cui, "Photoelectrochemical Performance of CdTe Sensitized $TiO_2$ Nanotube Array photoelectrodes," Electrochim. Acta, 91 330-36 (2013). https://doi.org/10.1016/j.electacta.2012.12.117
  33. J. Q. Zhang, J. Y. Yang, M. Liu, G. Li, W. X. Li, S. Gao, and Y. B. Luo, "Fabrication of CdTe Quantum Dots sensitized $TiO_2$ Nanorod-Array-Film Photoanodes via the Route of Electrochemical Atomic Layer Deposition," J. Electrochem. Soc., 161 [1] 55-8 (2014).
  34. H. J. Wang, F. Q. Sun, Y. Zhang, L. S. Li, H. Y. Chen, Q. S. Wu, and J. C. Yu, "Photochemical Growth of Nanoporous $SnO_2$ at the Air-Water Interface and its High Photocatalytic Activity," J. Mater. Chem., 20 [27] 5641-45 (2010). https://doi.org/10.1039/b926930d
  35. G. S. Li, D. Q. Zhang, and J. C. Yu, "Ordered Mesoporous $BiVO_4$ through Nanocasting: A Superior Visible Light-Driven Photocatalyst," Chem. Mater., 20 [12] 3983-92 (2008). https://doi.org/10.1021/cm800236z
  36. Y. Areerob, J. Y. Cho, W. K. Jang, and W. C. Oh, "Enhanced Sonocatalytic Degradation of Organic Dyes from Aqueous Solutions by Novel Synthesis of Mesoporous $Fe_3O_4-Graphene/ZnO@SiO_2$ Nanocomposites," Ultrason. Sonochem., 41 267-78 (2018). https://doi.org/10.1016/j.ultsonch.2017.09.034
  37. I. V. Lightcap, T. H. Kosel, and P. V. Kamat, "Anchoring Semiconductor and Metal Nanoparticles on a Two-Dimensional Catalyst Mat. Storing and Shuttling Electrons with Reduced Graphene Oxide," Nano Lett., 10 [2] 577-83 (2010). https://doi.org/10.1021/nl9035109
  38. G. Williams, B. Seger, and P. V. Kamat, "$TiO_2$-Graphene Nanocomposites. UV-Assisted Photocatalytic Reduction of Graphene Oxide," ACS Nano, 2 [7] 1487-91 (2008). https://doi.org/10.1021/nn800251f
  39. H. Zhang, X. J. Lv, Y. M. Li, Y. Wang, and J. H. Li, "$P_{25}$-Graphene Composite as a High Performance Photocatalyst," ACS Nano, 4 [1] 380-86 (2010). https://doi.org/10.1021/nn901221k
  40. Y. H. Ng, A. Iwase, A. Kudo, and R. Amal, "Reducing Graphene Oxide on a Visible-Light $BiVO_4$ Photocatalyst for an Enhanced Photoelectrochemical Water Splitting," J. Phys. Chem. Lett., 1 [17] 2607-12 (2010). https://doi.org/10.1021/jz100978u
  41. Y. H. Ng, A. Iwase, N. J. Bell, A. Kudo, and R. Amal, "Semiconductor/Reduced Graphene Oxide Nanocomposites Derived from Photocatalytic Reactions," Catal. Today, 164 [1] 353-57 (2011). https://doi.org/10.1016/j.cattod.2010.10.090
  42. H. T. Hu, X. B. Wang, F. M. Liu, J. C. Wang, and C. H. Xu, "Rapid Microwave-Assisted Synthesis of Graphene Nanosheets-Zinc Sulfide Nanocomposites: Optical and Photocatalytic Properties," Synth. Met., 161 [5-6] 404-10 (2011). https://doi.org/10.1016/j.synthmet.2010.12.018
  43. T. N. Lambert, C. A. Chavez, N. S. Bell, C. M. Washburn, D. R. Wheeler, and M. T. Brumbach, "Large Area Mosaic Films of Graphene-Titania: Self-Assembly at the Liquid-Air Interface and Photo-Responsive Behavior," Nanoscale, 3 [1] 188-91 (2011). https://doi.org/10.1039/C0NR00638F
  44. Y. P. Zhang and C. X. Pan, "$TiO_2$/Graphene Composite from Thermal Reaction of Graphene Oxide and its Photocatalytic Activity in Visible Light," J. Mater. Sci., 46 [8] 2622-26 (2011). https://doi.org/10.1007/s10853-010-5116-x
  45. B. J. Li and H. Q. Cao, "ZnO@ Graphene Composite with Enhanced Performance for the Removal of Dye from Water," J. Mater. Chem., 21 3346-49 (2011). https://doi.org/10.1039/C0JM03253K
  46. O. V. Prezhdo, P. V. Kamat, and G. C. Schatz, "Virtual Issue: Graphene and Functionalized Graphene," J. Phys. Chem. C, 115 [8] 3195-97 (2011). https://doi.org/10.1021/jp200538f
  47. V. Kamat, "Graphene-Based Nanoassemblies for Energy Conversion," J. Phys. Chem. Lett. 2 [3] 242-51 (2011). https://doi.org/10.1021/jz101639v
  48. X. Lv, W. Fu, C. Hu, Y. Chen, and W. Zhou, "Photocatalytic Reduction of $CO_2$ with $H_2O$ over a Graphene-Modified $NiO_{x-1}Ta_2O_5$ Composite Photocatalyst: Coupling Yields of Methanol and Hydrogen," RSC Adv., 3 [6] 1753-57 (2013). https://doi.org/10.1039/c2ra21283h
  49. X. An, K. Li, and J. Tan, "$Cu_2O$/Reduced Graphene Oxide Composites for the Photocatalytic Conversion of $CO_2$," ChemSusChem, 7 [4] 1086-93 (2014). https://doi.org/10.1002/cssc.201301194
  50. J. Yu, J. Jin, B. Cheng, and M. Jaroniec, "A Noble Metal-Free Reduced Graphene Oxide-CdS Nanorod Composite for the Enhanced Visible-Light Photocatalytic Reduction of $CO_2$ to Solar Fuel," J. Mater. Chem. A, 2 [10] 3407-16 (2014). https://doi.org/10.1039/c3ta14493c
  51. K. Ullah, S. Ye, S.-B. Jo, L. Zhu, K.-Y. Cho, and W.-C. Oh, "Optical and Photocatalytic Properties of Novel Heterogeneous $PtSe_2-Graphene/TiO_2$ Nanocomposites Synthesized via Ultrasonic Assisted Techniques," Ultrason. Sonochem., 21 [5] 1849-1857 (2014). https://doi.org/10.1016/j.ultsonch.2014.04.016
  52. T. Ghosh, J.-H. Lee, Z.-D. Meng, K. Ullah, C.-Y. Park, V. Nikam, and W.-C. Oh, "Graphene Oxide Based CdSe Photocatalysts: Synthesis, Characterization and Comparative Photocatalytic Efficiency of Rhodamine B and Industrial Dye," Mater. Res. Bull., 48 [3] 1268-74 (2013). https://doi.org/10.1016/j.materresbull.2012.12.023
  53. T Ghosh, K. Y. Cho, K. Ullah, V. Nikam, C. Y. Park, Z.-D. Meng, and W.-C. Oh, "High Photonic Effect of Organic Dye Degradation of Cd-Graphene-$TiO_2$ Particles," J. Ind. Eng. Chem., 19 [3] 797-805 (2013). https://doi.org/10.1016/j.jiec.2012.10.020
  54. L. Zhu, M. Teo, P. C. Wong, K. C. Wong, I. Narita, F. Ernst, K. A. R. Mitchell, and S. A. Campbell, "Synthesis, Characterization of a $CoSe_2$ Catalyst for the Oxygen Reduction Reaction," Appl. Catal., A, 386 [1-2] 157-65 (2010). https://doi.org/10.1016/j.apcata.2010.07.048
  55. L. Zhu, G. Trisha, C. Y. Park, Z. D. Meng, and W.-C. Oh, "Enhanced Sonocatalytic Degradation of Rhodamine B by Graphene-$TiO_2$ Composites Synthesized by an Ultrasonic-Aassisted Method," Chin. J. Catal., 33 [7-8] 1276-83 (2012). https://doi.org/10.1016/S1872-2067(11)60430-0
  56. K. Ullah, S. Ye, L. Zhu, S. B. Jo, W. K. Jang, K. Y. Cho, and W.-C. Oh, "Noble Metal Doped Graphene Nanocomposites and its Study of Photocatalytic Hydrogen Evolution," Solid State Sci., 31 91-8 (2014). https://doi.org/10.1016/j.solidstatesciences.2014.03.006
  57. W. Gao, L. B. Alemany, L. Ci, and P. M. Ajayan, "New Insights into the Structure and Reduction of Graphite Oxide," Nat. Chem., 1 403-8 (2009). https://doi.org/10.1038/nchem.281
  58. D. W. Boukhvalov and M. I. Katsnelson, "Modeling of Graphite Oxide," J. Am. Chem. Soc., 130 [32] 10697-701 (2008). https://doi.org/10.1021/ja8021686
  59. H. K. Jeong, H. J. Noh, J. Y. Kim, M. H. Jin, C. Y. Park, and Y. H. Lee, "X-ray Absorption Spectroscopy of Graphite Oxide," EPL, 82 [6] 67004-5 (2008). https://doi.org/10.1209/0295-5075/82/67004
  60. W. K. Ho and J. C. Yu, "Sonochemical Synthesis of Visible Light Photocatalytic Behavior of CdSe and $CdSe/TiO_2$ Nanoparticles," J. Mol. Catal. A: Chem., 247 [1-2] 268-74 (2006). https://doi.org/10.1016/j.molcata.2005.11.057
  61. H. Lange, M. Artemyev, U. Woggon, and C. Thomsen, "Geometry Dependence of the Phonon Modes in CdSe Nanorods," Nanotechnology, 20 [4] 045705 (2009). https://doi.org/10.1088/0957-4484/20/4/045705
  62. V. M. Dzhagan, I. Lokteva, M. Y. Valakh, and O. E. Raevska, "Spectral Features above LO Phonon Frequency in Resonant Raman Scattering Spectra of Small CdSe Nanoparticles," J. Appl. Phys., 106 [8] 084318 (2009). https://doi.org/10.1063/1.3248357
  63. R. C. Wang, Y.-C. Chen, S.-J. Chen, and Y.-M. Chang, "Unusual Functionalization of Reduced Graphene Oxide for Excellent Chemical Surface Enhanced Raman Scattering by Coupling with ZnO," Carbon, 70 215-23 (2014). https://doi.org/10.1016/j.carbon.2013.12.110
  64. S. Ameen, H. K. Seo, M. S. Akhtar, and H. S. Shin, "Novel Graphene/Polyaniline Nanocomposites and its Photocatalytic Activity toward the Degradation of Rose Bengal Dye," Chem. Eng. J., 210 220-28 (2012). https://doi.org/10.1016/j.cej.2012.08.035
  65. Z. Zafar, Z. H. Ni, X. Wu, Z. X. Shi, H. Y. Nan, J. Bai, and L. T. Sun, "Evolution of Raman Spectra in Nitrogen Doped Graphene," Carbon, 61 57-62 (2013). https://doi.org/10.1016/j.carbon.2013.04.065
  66. D. Li, H. Haneda, S. Hishita, and N. Ohashi, "Visible-Light-Driven Nitrogen-Doped $TiO_2$ Photocatalysts: Effect of Nitrogen Precursors on Their Photocatalysis for Decomposition of Gas-Phase Organic Pollutant," Mater. Sci. Eng., B, 117 [1] 67-75 (2005). https://doi.org/10.1016/j.mseb.2004.10.018
  67. H. Q. Sun, S. B. Wang, H. M. Ang, M. O. Tade, and Q. Li, "Halogen Element Modified Titanium dioxide for Visible Light Photocatalysis," Chem. Eng. J., 162 [15] 437-47 (2010). https://doi.org/10.1016/j.cej.2010.05.069
  68. H. Q. Sun, Y. Bai, W. Q. Jin, and N. P. Xu, "Visible-Light-Driven $TiO_2$ Catalysts Doped with Low-Concentration Nitrogen Species," Sol. Energy Mater. Sol. Cells, 92 [1] 76-83 (2008). https://doi.org/10.1016/j.solmat.2007.09.003
  69. R. Rao, R. Podila, R. Tsuchikawa, J. Katoch, D. Tishler, A. Rao, and I. M. shigami, "Effects of Layer Stacking on the Combination Raman Modes in Graphene," ACS Nano, 5 [3] 1594-99 (2011). https://doi.org/10.1021/nn1031017
  70. K. John, D. T. Manolis, D. P. George, N. A. Mariza, S. T. Kostas, G. Soa, B. Kyriakos, K. Christos, O. Michael, and L. Alexis, "Highly Active Catalysts for the Photo Oxidation of Organic Compounds by Deposition of Fullerene onto the MCM-41 Surface," Appl. Catal., B, 117-118 36-48 (2012). https://doi.org/10.1016/j.apcatb.2011.12.024
  71. D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "Synthesis of Frost-like CuO Combined Graphene-$TiO_2$ by Self-Assembly Method and its High Photocatalytic Performance," Appl. Surf. Sci., 412 252-61 (2017). https://doi.org/10.1016/j.apsusc.2017.03.248
  72. D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "Synthesis of Mesoporous $SiO_2/Cu_2O$-Graphene Nanocomposites and their Highly Efficient Photocatalytic Performance for Dye Pollutants," RSC Adv., 7 [47] 29284-94 (2017). https://doi.org/10.1039/C7RA03526H
  73. D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "A Facile Route to Synthesize Ternary $Cu_2O$ Quantum Dot/Graphene-$TiO_2$ Nanocomposites with an Improved Photocatalytic Effect," Fullerenes, Nanotubes, Carbon Nanostruct., 27 [12] 684-90 (2017).
  74. D. C. T. Nguyen and W.-C. Oh, "Ternary Self-Assembly Method of Mesoporous Silica and $Cu_2O$ Combined Graphene Composite by Nonionic Surfactant and Photocatalytic Degradation of Cationic-Anionic Dye Pollutants," Sep. Purif. Technol., 190 77-89 (2018). https://doi.org/10.1016/j.seppur.2017.08.054
  75. D. C. T. Nguyen, K.-Y. Cho, and W.-C. Oh, "New Synthesis of the Ternary Type $Bi_2WO_6-GO-TiO_2$ Nanocomposites by the Hydrothermal Method for the Improvement of the Photo-Catalytic Effect," Appl. Chem. Eng., 28 705-13 (2017).
  76. D. C. T. Nguyen, J.-H. Woo, K. Y. Cho, C.-H. Jung, W.-C. Oh, "Highly Efficient Visible Light Driven Photocatalytic Activities of the $LaCuS_2$-Graphene Composite-Decorated Ordered Mesoporous Silica," Sep. Purif. Technol., 205 11-21 (2018). https://doi.org/10.1016/j.seppur.2018.05.019