DOI QR코드

DOI QR Code

Distribution Analysis of TRISO-Coated Particles in Fully Ceramic Microencapsulated Fuel Composites

  • Lee, Hyeon-Geun (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Daejong (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Lee, Seung Jae (Materials Development Section, KEPCO Nuclear Fuel) ;
  • Park, Ji Yeon (Nuclear Materials Development Division, Korea Atomic Energy Research Institute) ;
  • Kim, Weon-Ju (Nuclear Materials Development Division, Korea Atomic Energy Research Institute)
  • Received : 2018.06.08
  • Accepted : 2018.06.18
  • Published : 2018.07.31

Abstract

FCM nuclear fuel, a concept proposed as an accident tolerant fuel in light water reactors, consists of TRISO fuel particles embedded in a SiC matrix. The uniform dispersion of internal TRISO fuel particles in the FCM fuel is very important for improving the fuel efficiency. In this study, FCM sintered pellets with various volume ratios of TRISO-coated particles were prepared by hot press sintering. The distribution of TRISO-coated particles was quantitatively analyzed using X-ray ${\mu}CT$ and expressed as a dispersion uniformity index. TRISO-coated particles were most uniformly dispersed in the FCM pellets prepared using only overcoated TRISO particles without mixing of additional SiC matrix powder. FCM pellets with uniformly dispersed TRISO particle volume fraction of up to 50% were prepared using overcoated TRISO particles with varying thickness.

Keywords

References

  1. L. L. Snead, K. A. Terrani, F. Venneri, Y. Kim, J. E. Tulenko, C. W. Forsberg, P. F. Peterson, and E. J. Lahoda, "Fully Ceramic Microencapsulated Fuels: A Transformational Technology for Present and Next Generation Reactors-Properties and Fabrication of FCM Fuel," Trans. Am. Nucl. Soc., 104 668-70 (2011).
  2. K. A. Terrani, L. L. Snead, and J. C. Gehin, "Microencapsulated Fuel Technology for Commercial Light Water and Advanced Reactor Application," J. Nucl. Mater., 427 [1-3] 209-24 (2012). https://doi.org/10.1016/j.jnucmat.2012.05.021
  3. J.-H. Chun, S.-W. Lim, B.-D. Chung, and W.-J. Lee, "Safety Evaluation of Accident Tolerant FCM Fueled Core with SiC-Coated Zircaloy Cladding for Design-Basis Accidents and Beyond DBAs," Nucl. Eng. Des., 289 287-95 (2015). https://doi.org/10.1016/j.nucengdes.2015.04.021
  4. D. R. Olander, "Nuclear Fuels - Present and Future," J. Nucl. Mater., 389 [1] 1-22 (2009). https://doi.org/10.1016/j.jnucmat.2009.01.297
  5. W.-J. Kim, S. M. Kang, K. H. Park, A. Kohyama, W.-S. Ryu, and J. Y. Park, "Fabrication and Ion Irradiation Characteristic of SiC-Based Ceramics for Advanced Nuclear Energy System (in Korean)," J. Korean Ceram. Soc., 42 [8] 575-81 (2005). https://doi.org/10.4191/KCERS.2005.42.8.575
  6. Y. Katoh, T. Nozawa, L. L. Snead, K. Ozawa, and H. Tanigawa, "Stability of SiC and Its Composites at High Neutron Fluence," J. Nucl. Mater., 417 [1-3] 400-05 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.088
  7. G. R. Hopkins and R. J. Price, "Fusion Reactor Design with Ceramics," Nucl. Eng. Des./Fusion, 2 [1] 111-43 (1985). https://doi.org/10.1016/0167-899X(85)90008-4
  8. L. L. Snead, K. A. Terrani, Y. Katoh, C. Silva, J. J. Leonard, and A. G. Perez-Bergquist, "Stability of SiC-Matrix Microencapsulated Fuel Constituents at Relevant LWR Conditions," J. Nucl. Mater., 448 [1-3] 389-98 (2014). https://doi.org/10.1016/j.jnucmat.2013.09.056
  9. B. W. Lin, M. Imai, T. Yano, and T. Iseki, "Hot-Pressing of ${\beta}-SiC$ Powder with Al-B-C Additives," J. Am. Ceram. Soc., 69 [4] C67-68 (1986).
  10. B. R. Zhang, F. Marino, and M. Ferraris, "Liquid-Phase Hot-Pressing and WC Particle Reinforcement of SiC-Si Composites," J. Eur. Ceram. Soc., 14 [6] 549-55 (1994). https://doi.org/10.1016/0955-2219(94)90126-0
  11. K. Yoshida, Budiyanto, M. Imai, and T. Yano, "Processing and Microstructure of Silicon Carbide Fiber-Reinforced Silicon Carbide Composite by Hot-Pressing," J. Nucl. Mater., 258-63 1960-65 (1998). https://doi.org/10.1016/S0022-3115(98)00128-7
  12. S. Dong, Y. Katoh, and A. Kohyama, "Preparation of SiC/SiC Composite by Hot Pressing, Using Tyranno-SA Fiber as Reinforcement," J. Am. Ceram. Soc., 86 [1] 26-32 (2003). https://doi.org/10.1111/j.1151-2916.2003.tb03272.x
  13. K. A. Terrani, J. O. Kiggans, Y. Katoh, K. Shimoda, F. C. Montgomery, B. L. Armstrong, C. M. Parish, T. Hinoki, J. D. Hunn, and L. L. Snead, "Fabrication and Characterization of Fully Ceramic Microencapsulated Fuels," J. Nucl. Mater., 426 [1-3] 268-76 (2012). https://doi.org/10.1016/j.jnucmat.2012.03.049
  14. H.-G. Lee, D. J. Kim, J. Y. Park, and W.-J. Kim, "Sintering and Characterization of SiC-Matrix Composite Including TRISO Particles (in Korean)," J. Korean Ceram. Soc., 51 [5] 418-23 (2014). https://doi.org/10.4191/kcers.2014.51.5.418
  15. H.-G. Lee, D. J. Kim, S. J. Lee, J. Y. Park, and W.-J. Kim, "Thermal Conductivity Analysis of SiC Ceramics and Fully Ceramic Microencapsulated Fuel Composites," Nucl. Eng. Des., 311 9-15 (2017). https://doi.org/10.1016/j.nucengdes.2016.11.005
  16. J. G. Kim, E.-S. Kum, D. J. Choi, S. S. Kim, H. L. Lee, Y. W. Lee, and J. Y. Park, "A Study on the CVD Deposition for SiC-TRISO Coated Fuel Material Fabrication (in Korean)," J. Korean Ceram. Soc., 44 [3] 169-74 (2007). https://doi.org/10.4191/KCERS.2007.44.3.169
  17. K. A. Terrani, J. O. Kiggans, C. M. Silva, C. Shih, Y. Katoh, and L. L. Snead, "Progress on Matrix SiC Processing and Properties for Fully Ceramic Microencapsulated Fuel Form," J. Nucl. Mater., 457 9-17 (2015). https://doi.org/10.1016/j.jnucmat.2014.10.034
  18. G. Y u, Y. Du, X. Xiang, Y. Liu, Z. Li, and X. Wang, "3D Nondestructive Visualization and Evaluation of TRISO Particles Distribution in HTGR Fuel Pebbles Using Cone-Beam Computed Tomography," Sci. Technol. Nucl. Install., 2017 3857075 (2017).

Cited by

  1. Processing of fully ceramic microencapsulated fuels with a small amount of additives by hot-pressing vol.41, pp.7, 2021, https://doi.org/10.1016/j.jeurceramsoc.2021.02.020