DOI QR코드

DOI QR Code

사물인터넷을 이용한 지능형 노지 농작물 관리 시스템 개발

The Smart Outdoor Cultivation System using Internet of Things

  • 염성관 (원광대학교 정보통신공학과) ;
  • 홍성광 (영주 E&I) ;
  • 고완기 (제주한라대학교 정보기술건축학부)
  • Youm, Sungkwan (Department of Information and Communication Engineering, Wonkwang University) ;
  • Hong, SungKwang (YoungJoo E&I Limited) ;
  • Koh, Wan-Ki (School of Information Technology and Architecture Cheju Halla University)
  • 투고 : 2018.05.31
  • 심사 : 2018.07.20
  • 발행 : 2018.07.28

초록

농업 인구의 감소와 노령화로 인하여 온실 재배 중심의 스마트 팜에 대한 연구가 활발하게 진행 중이나 채소와 같은 작물의 경우 노지 재배가 70%를 차지한다. 이에 노지 농작물 재배의 자동화, 무인화 및 지능화를 통해 생산성을 향상시키고 토양 오염을 방지할 필요가 있다. 본 논문은 사물인터넷을 이용한 노지 농작물 제배 시스템 구축 사례를 설명하고 노지작물 제배 시스템에서의 환경 변수를 정의하였다. 다양한 센서을 통해서 토양의 온도, 함수율, 전기전도도, 산성도를 측정하여 LoRa 통신 모듈을 이용하여 서버로 정보를 전달하고, 서버는 이 데이터를 바탕으로 시비량 및 관수량을 제어한다. 노지농작물 재배에 적합한 통신 방식인 LoRa 기술을 이용하여 넓은 노지를 관리하고 생산량 및 판매실적까지 관리하는 시스템을 개발하였다.

Research on smart farms centering on greenhouse cultivation is actively under way due to the decrease in agriculture population and aging, but in the case of vegetables such as vegetables, outdoor cultivation is 70%. Therefore, there is a need to improve productivity and prevent soil contamination by automating, cultivating, and intelligentizing the outdoor cultivation of agriculture crops. In this paper, we show the case of establishing a outdoor production system using the Internet of things and define the environmental variables in the outdoor production system. By measuring soil temperature, water content, electrical conductivity and acidity through sensors, LoRa communication module transmits the information to the outdoor production system. The outdoor production system controls the amount of fertilizer and the volume of water based on this sensor data. We have developed a system that manages a wide range of crops using LoRa technology, which is a suitable communication method for cultivating crops, and manages production volume and sales performance.

키워드

참고문헌

  1. K. A. Kim, Y. M. Jeong & D. Y. Park. (2016). The Implementation of Farm Management System based on IoT. Proceeding of 2016 Korea Information and Communications Society (KICS) Winter Conference, Jan. (pp. 366-367). Jeongseon : KICS.
  2. Y. C. Yurl, H. M. Young, K. S. Gak & P. J. Young. (2017). Smart Farm Technology Development and Standardization Trend, Proceeding of 2017 Korea Information and Communications Society (KICS) Fall Conference (pp. 311-312). Jeongseon : KICS.
  3. M. Lee, H. Lee, G. Han, D. Lee 7 G. Kim. (2017). Standardizations for ICT Components and Systems for Korean Smartfarm, Proceeding of 2017 Korea Information and Communications Society (KICS) Fall Conference, (pp 88-89). Jeongseon : KICS.
  4. J. T. Kim & J. S. Han. (2017) Agricultural Management Innovation through the Adoption of Internet of Things : Case of Smart Farm, Journal of Digital Convergence, 15(3), 65-75. https://doi.org/10.14400/JDC.2017.15.3.65
  5. J. Baek, J. Heo, H. Kim, Y. Hong & J. Lee. (2018) Research-platform Design for the Korean Smart Greenhouse Based on Cloud Computing, Protected Horticulture and Plant Factory, 27(1), 27-33. https://doi.org/10.12791/KSBEC.2018.27.1.27
  6. J. W. Lee, J. H. Lee & H. Yoe. (2014). Agriculture ICT Convergence Technology trend and direction of improvement. Journal of The Korean Institute of Communication Sciences, 31(5), 54-60.
  7. S. Oh. (2017), A Design of Intelligent Information System for Greenhouse Cultivation, Journal of Digital Convergence, 15(2), 183-190. https://doi.org/10.14400/JDC.2017.15.2.183
  8. W. K. Jung. (2006). Understanding of Soil acidity and Management of Acid Volume, Soil & Fertilizer, 25(3), 29-35.
  9. B. Lee. P. Jung. W. Lee & K. Eom. (2015). Changes in Air Temperature and Surface Temperature of Crop Leaf and Soil. Journal of Climate Change Research, 6(3), 209-221. https://doi.org/10.15531/ksccr.2015.6.3.209
  10. M. Lee & H. Yeo. (2016). Design of ICT based Protected Horticulture for Recovering Natural Disaster. Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology. 6(10), 373-382.
  11. Ministry of Agriculture, Food and Rural Affairs, (2017) 2017 Status of Greenhouse of Vegetable Plant and Production of Vegetable. Sejong.
  12. H. Choi. D. Noh. J. Lee & D. Kim. (2015) Design and Implementation of Private LoRa(Long Range) Remote Control System for Smart Farm. Proceeding of 2017 Korea Information and Communications Society (KICS) Fall Conference, (pp 266-267). Jeongseon Jeju: KICS.
  13. S. Kim & H. Yoe. (2015), Design of Greenhouse Environment data consulting system Using Bigdata Proceeding of 2015 Korea Information and Communications Society (KICS) Summer Conference (pp. 77-78). Jeju : KICS.
  14. A. Latiff, R. S. Yusof. A. Rahim. Sayuti, M. Yusof & Baharudin. (2017). A training monitoring system for cyclist based on wireless sensor networks. Indonesian Journal of Electrical Engineering and Computer Science, 6(1), 80-87. https://doi.org/10.11591/ijeecs.v6.i1.pp80-87
  15. H. Jawad, R. Nordin. S. Gharghan. A Jawad & M Ismail. (2017). Energy-Efficient Wireless Sensor Networks for Precision Agriculture: A Review. Sensors, 17(8), 1781.
  16. LoRa Alliance. (2016 July). LoRaWAN Specification.
  17. A. Augustin. J. Yi, T. Clausen & W. M. Townsley. (2016). A Study of LoRa: Long Range & Low Power Networks for the Internet of Things. Sensors, 16(9), 1466. https://doi.org/10.3390/s16091466