DOI QR코드

DOI QR Code

NEMO-enabled Hybrid Distributed Mobility Management

네트워크 이동성을 지원하는 하이브리드 분산 이동성 관리

  • Wie, Sunghong (Department of Electrical and Electronic Engineering, The Cyber University of Korea)
  • Received : 2018.04.24
  • Accepted : 2018.05.13
  • Published : 2018.07.31

Abstract

In Distributed Mobility Management (DMM) protocol, the mobility functions are distributed to network edge closer to mobile users. DMM protocol has some advantages of low-cost traffic delivery, optimized routing path, high scalability. However, it needs many mobile anchors to exchange signaling messages and it results in a high signaling cost. Thus, previous works suggested the hybrid DMM protocol to reduce the high signaling cost for long-live sessions and this paper extends a hybrid scheme to the NEMO environment. The mobile routers are installed at vehicles and can move together with several mobile devices. So we can define the high-mobility property for mobile routers and suggest the hybrid scheme using this property. According to the high-mobility property of mobile routers, we can distribute the mobile anchors or allocate a centralized mobile anchor. In this paper, we mathematically analyze the performance of the proposed NEMO-enabled hybrid DMM protocol and show superior performance.

분산 이동성 관리 방식은 이동성 기능을 사용자와 가까이에 위치한 네트워크 경계로 분산시킨다. 이에 따라서 트래픽 전달 비용을 낮추고 패킷 전달 경로를 최적화할 수 있으며 확장성이 높은 장점을 갖는다. 하지만, 시그널링 메시지를 교환하기 위한 모바일 앵커의 개수가 증가하여 시그널링 비용이 증가하는 문제점을 갖는다. 그래서 지속시간이긴 세션에 대해서 높은 시그널링 비용을 감소시키는 하이브리드 분산 이동성 방식이 연구되었고 본 논문에서는 네트워크 이동성을 지원하는 환경으로 하이브리드 방식을 확장한다. 모바일 라우터는 차량에 장착되어 모바일 장치들과 함께 이동한다. 따라서 모바일 라우터에 대해서 고속 이동성 특성을 정의하여 이용하는 하이브리드 방식을 제안한다. 모바일 라우터의 이동성 특성에 따라서 모바일 앵커를 분산하여 할당하거나 혹은 특정한 모바일 앵커를 지정하여 할당한다. 본 논문은 네트워크 이동성을 지원하는 하이브리드 분산 이동성 관리 방식에 대해서 제안하고 성능을 수학적으로 분석하여 우수한 성능임을 보여준다.

Keywords

References

  1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021, [Internet] Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html.
  2. J. C. Zuniga, C. J. Bernardos, A. de la Oliva, T. Melia, R. Costa, and A. Reznik, "Distributed mobility management: A standards landscape," IEEE Communications Magazine, vol. 51, no. 3, pp. 80-87, March 2013. https://doi.org/10.1109/MCOM.2013.6476870
  3. D. H. Shin, D. Moses, M. Venkatachalam, and S. Bagchi, "Distributed mobility management for efficient video delivery over all-IP mobile networks: Competing approaches," IEEE Network, vol. 27, no. 2, pp. 28-33, March/April 2013. https://doi.org/10.1109/MNET.2013.6485093
  4. J. Lee, J. Bonnin, P. Seite and H. A. Chan, "Distributed IP Mobility Management from the Perspective of the IETF: Motivations, Requirements, Approaches, Comparison, and Challenges," IEEE Wireless Communications, vol. 20, no. 5, pp. 159-168, Oct. 2013. https://doi.org/10.1109/MWC.2013.6664487
  5. F. Giust, C. J. Bernardos, and A. de la Oliva, "Analytic Evaluation and Experimental Validation of a Network-based IPv6 Distributed Mobility Management Solution," IEEE Transactions on Mobile Computing, vol 13, no. 11, pp. 2484- 2497, Nov. 2014. https://doi.org/10.1109/TMC.2014.2307304
  6. F. Giust, L. Cominardi and C. J. Bernardos, "Distributed Mobility Management for Future 5G Networks: Overview and Analysis of Existing Approaches," IEEE Communications Magazine, vol. 53, no. 1, pp. 142-149, Jan. 2015. https://doi.org/10.1109/MCOM.2015.7010527
  7. J. H. Lee, Z. Yan, J. M. Bonnin and X. Lagrange, "Dynamic tunneling for network-based distributed mobility management coexisting with PMIPv6," in Proceedings of 24 th International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, pp. 29953000, Sept. 2013.
  8. T. T. Nguyen and C. Bonnet, "A Hybrid Centralized/Distributed Mobility Management for Supporting Highly Mobile Users," in Proceedings of IEEE International Conference on Communications, pp. 3939-3944, June 2015.
  9. S. Wie and J. Jang, "Performance Evaluation of Hybrid Distributed Mobility Management," Journal of Korea Institute of Information and Communication Engineering, vol. 21, no. 10, pp. 1862-1872, Oct. 2017. https://doi.org/10.6109/JKIICE.2017.21.10.1862
  10. IETF Std. RFC 3963, Network Mobility(NEMO) basic support protocol, IETF, Jan. 2005.
  11. I. Soto, C. J. Bernardos, M. Calderon, A. Banchs and A. Azcorra, "NEMO-enabled localized mobility support for internet access in automotive scenarios," IEEE Communications Magazine, vol. 47, no. 5, pp. 152-159, May. 2009. https://doi.org/10.1109/MCOM.2009.4939291
  12. Truong-xuan Do and Younghan Kim, "EPD-NEMO: efficient PMIPv6-based distributed network mobility management," Wireless Networks, vol. 21, no. 7, pp. 2303-2314, Oct. 2015. https://doi.org/10.1007/s11276-015-0916-1
  13. P. P. Ernest, O. E. Falowo, and H. A. Chan, "Design and Performance Evaluation of Distributed Mobility Management Schemes for Network Mobility," Journal of Network and Computer Applications, vol. 61, pp 46-58, Feb. 2016. https://doi.org/10.1016/j.jnca.2015.09.012
  14. P. Sornlertlamvanich and S. Kamolphiwong, "Host-Based and Network-Based Distributed Mobility Management for NEMO," IEICE Transactions on Communications, vol. E100-B, no. 1, pp. 67-74, Jan. 2017. https://doi.org/10.1587/transcom.2016CQP0009
  15. T. T. Nguyen and C. Bonnet, "A Hybrid Centralized-Distributed Mobility Management Architecture for Network Mobility," in IEEE International World of Wireless Mobile and Multimedia Networks(WoWMom), pp. 1-9, June 2015.
  16. Vaddempudi Srinidhi, "Classification of User Behaviour in Mobile Internet," Asia-pacific Journal of Convergent Research Interchange, vol. 2, no. 2, pp. 9-18, June 2016.