DOI QR코드

DOI QR Code

Synthesis of Microaglae-Capturing Magnetic Microcapsule Using CaCO3 Microparticles and Layer-by-Layer Coating

  • Lee, Young-Hee (Graduate School of Energy Science and Technology, Chungnam National University) ;
  • Seo, Jung-Cheol (Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology(KAIST)) ;
  • Oh, You-Kwan (School of Chemical and Biomolecular Engineering, Pusan National University) ;
  • Lee, Kyubock (Graduate School of Energy Science and Technology, Chungnam National University)
  • Received : 2018.04.30
  • Accepted : 2018.06.28
  • Published : 2018.07.27

Abstract

Microalgae produce not only lipids for biodiesel production but also valuable biochemicals which are often accumulated under cellular stress mediated by certain chemicals. While the microcarriers for the application of drug delivery systems for animal cells are widely studied, their applications into microalgal research or biorefinery are rarely investigated. Here we develope dual-functional magnetic microcapsules which work not only as flocculants for microalgal harvesting but also potentially as microcarriers for the controlled release of target chemicals stimulating microalgae to enhance the accumulation of valuable chemicals. Magnetic microcapsules are synthesized by layer-by-layer(LbL) coating of PSS-PDDA on $Fe_3O_4$ nanoparticle-embedded $CaCO_3$ microparticles followed by removing $CaCO_3$ sacrificial templates. The positively charged magnetic microcapsules flocculate microalgae by electrostatic interaction which are sequentially collected by the magnetophoretic separation. The microcapsules with a polycationic outer layer provide efficient binding sites for negatively charged microalgae and by that means are further utilized as a chemical-delivery and flocculation system for microalgal research and biorefineries.

Keywords

References

  1. J. Kost and R. Langer, Adv. Drug Delivery Rev., 46, 125 (2001). https://doi.org/10.1016/S0169-409X(00)00136-8
  2. C. Déjugnat and G. B. Sukhorukov, Langmuir, 20, 7265 (2004). https://doi.org/10.1021/la049706n
  3. N. Gaponik, I. L. Radtchenko, G. B. Sukhorukov and A. L. Rogach, Langmuir, 20, 1449 (2004). https://doi.org/10.1021/la035914o
  4. M. F. Bédard, B. G. De Geest, A. G. Skirtach, H. Möhwald and G. B. Sukhorukov, Adv. Colloid Interface Sci., 158, 2 (2010). https://doi.org/10.1016/j.cis.2009.07.007
  5. B. Zebli, A. S. Susha, G. B. Sukhorukov, A. L. Rogach and W. J. Parak, Langmuir, 21, 4262 (2005). https://doi.org/10.1021/la0502286
  6. A. A. Antipov and G. B. Sukhorukov, Adv. Colloid Interface Sci., 111, 49 (2004). https://doi.org/10.1016/j.cis.2004.07.006
  7. A. A. Antipov, D. Shchukin, Y. Fedutik, A. I. Petrov, G. B. Sukhorukov and H. Mohwald, Colloids Surf., A, 224, 175 (2003). https://doi.org/10.1016/S0927-7757(03)00195-X
  8. S. A. Sukhishvili, Curr. Opin. Colloid Interface Sci., 10, 37 (2005). https://doi.org/10.1016/j.cocis.2005.05.001
  9. B. G. De Geest, N. N. Sanders, G. B. Sukhorukov, J. Demeester and S. C. De Smedt, Chem. Soc. Rev., 36, 636 (2007). https://doi.org/10.1039/B600460C
  10. T. M. Mata, A. A. Martins and N. S. Caetano, Renew. Sust. Energ. Rev., 14, 217 (2010). https://doi.org/10.1016/j.rser.2009.07.020
  11. R. H. Wijffels, M. J. Barbosa and M. H. Eppink, Biofuels, Bioprod. Biorefin., 4, 287 (2010). https://doi.org/10.1002/bbb.215
  12. H.-W. Yen, I.-C. Hu, C.-Y. Chen, S.-H. Ho, D.-J. Lee and J.-S. Chang, Bioresour. Technol., 135, 166 (2013). https://doi.org/10.1016/j.biortech.2012.10.099
  13. S.-A. Choi, J.-S. Lee, Y.-K. Oh, M.-J. Jeong, S. W. Kim and J.-Y. Park, Algal Res., 3, 44 (2014). https://doi.org/10.1016/j.algal.2013.11.013
  14. T. Hwang, S.-J. Park, Y.-K. Oh, N. Rashid and J. I. Han, Bioresour. Technol., 139, 379 (2013). https://doi.org/10.1016/j.biortech.2013.03.149
  15. J. Kim, B. G. Ryu, K. Kim, B. K. Kim, J. I. Han and J. W. Yang, Bioresour. Technol., 123, 164 (2012). https://doi.org/10.1016/j.biortech.2012.08.010
  16. D. Vandamme, I. Foubert and K. Muylaert, Trends Biotechnol., 31, 233 (2013). https://doi.org/10.1016/j.tibtech.2012.12.005
  17. K. Lee, S. Y. Lee, J.-G. Na, S. G. Jeon, R. Praveenkumar, D.-M. Kim, W.-S. Chang and Y.-K. Oh, Bioresour. Technol., 149, 575 (2013). https://doi.org/10.1016/j.biortech.2013.09.074
  18. K. Lee, S. Y. Lee, R. Praveenkumar, B. Kim, J. Y. Seo, S. G. Jeon, J.-G. Na, J,-Y. Park, D.-M. Kim and Y.-K. Oh, Bioresour. Technol., 167, 284 (2014). https://doi.org/10.1016/j.biortech.2014.06.055
  19. Y.-C. Lee, K. Lee and Y.-K. Oh, Bioresour. Technol., 184, 63 (2015). https://doi.org/10.1016/j.biortech.2014.10.145
  20. J. Y. Seo, R. Praveenkumar, B. Kim, J.-C. Seo, J.-Y. Park, J.-G. Na, S. G. Jeon, S. B. Park, K. Lee and Y.-K. Oh, Green Chem., 18, 3981 (2016). https://doi.org/10.1039/C6GC00904B
  21. M. A. Borowitzka, J. Appl. Phycol., 25, 743 (2013). https://doi.org/10.1007/s10811-013-9983-9
  22. H. Danxiang, L. Yantao and H. Qiang, Algae, 28, 131 (2013). https://doi.org/10.4490/algae.2013.28.2.131
  23. O. Pignolet, S. Jubeau, C. Vaca-Garcia and P. Michaud, J. Ind. Microbiol. Biotechnol., 40, 781 (2013). https://doi.org/10.1007/s10295-013-1281-7
  24. G. Markou and E. Nerantzis, Biotechnol. Adv., 31, 1532 (2013). https://doi.org/10.1016/j.biotechadv.2013.07.011
  25. T. R. Zalogin and U. Pick, Algal Res., 3, 8 (2014). https://doi.org/10.1016/j.algal.2013.12.002
  26. S. Kim, H. Kim, D. Ko, Y. Yamaoka, M. Otsuru, M. Kawai-Yamada, T. Ishikawa, H.-M. Oh, I. Nishida, Y. Li- Beisson and Y. Lee, Plos One, 8, e81978 (2013). https://doi.org/10.1371/journal.pone.0081978
  27. K. D. Sung, J. S. Lee, C. S. Shin and S. C. Park, Korean J. Chem. Eng., 15, 449-450 (1998). https://doi.org/10.1007/BF02697138
  28. N. Feoktistova, J. Rose, V. Z. Prokopovi , A. S. Vikulina, c′ A. Skirtach and D. Volodkin, Langmuir, 32, 4229 (2016). https://doi.org/10.1021/acs.langmuir.6b00717
  29. X. Yan, J. Li and H. Möhwald, Adv. Mater., 24, 2663 (2013).
  30. A. Yashchenok, B. Parakhonskiy, S. Donatan, D. Kohler, A. Skirtach and H. Mohwald, J. Mater. Chem. B, 1, 1223 (2013). https://doi.org/10.1039/c2tb00416j
  31. S. Schmidt and D. Volodkin, J. Mater. Chem. B, 1, 1210 (2013). https://doi.org/10.1039/C2TB00344A
  32. M. Kim, M. G. Choi, H. W. Ra, S. B. Park, Y.-J. Kim and K. Lee, Materials, 11, 296 (2018). https://doi.org/10.3390/ma11020296
  33. J. Heuvingh, M. Zappa and A. Fery, Langmuir, 21, 3165 (2005). https://doi.org/10.1021/la047388m
  34. J. Y. Seo, K. Lee, S. Y. Lee, S. G. Jeon, J.-G. Na, Y.-K. Oh and S. B. Park, Bioresour. Technol., 152, 562 (2014). https://doi.org/10.1016/j.biortech.2013.11.064