DOI QR코드

DOI QR Code

Review of Types, Properties, and Importance of Ferrous Based Shape Memory Alloys

  • Received : 2018.03.26
  • Accepted : 2018.07.04
  • Published : 2018.07.27

Abstract

Shape memory alloys(SMAs) have revolutionized the material engineering sciences as they exhibit exclusive features i.e. shape memory effect(SME) and super-elasticity. SMAs are those alloys that when deform return to their predeformed shape upon heating, they also restore their original shape by removing the load. Research on properties of newly advent of several types of ferrous based shape memory alloys(Fe-SMAs), shows that they have immense potential to be the counterpart of Nitinol(NiTi-SMA). These Fe-SMAs have been used and found to be effective because of their low cost, high cold workability, good weldability & excellent characteristics comparing with Nitinol(high processing cost and low cold workability) SMAs. Some of the Fe-SMAs show super-elasticity. Fe-SMAs, especially Fe-Mn-Si alloys have an immense potential for civil engineering structures because of its unique properties e.g. two-way shape memory effect, super elasticity and shape memory effect as well as due to its low cost, high elastic stiffness and wide transformation hysteresis comparative to Nitinol. Further research is being conducted on SMAs to improve and impinge better attributes by improving the material compositions, quantifying the SMA phase transition temperature etc. In this research pre-existing Fe-SMAs are categorised and collected in a tabulated form. An analysis is performed that which category is mostly available. Last 50 years data of Fe-SMA publications and US Patents is collected to show its importance in terms of increasing research on such type of alloys to invent different compositions and applications. This data is analysed as per different year groups during last 50 years and it was analysed as per whether the keywords exist in title of an article or anywhere in the article. It was found that different keywords related to Fe-SMAs/categories of Fe-SMAs, almost don't exist in the title of articles. However, these keywords related to Fe-SMAs/categories of Fe-SMAs, exist inside the article but still there are not too many publications related to Fe-SMAs/categories of Fe-SMAs.

Keywords

References

  1. W.-S. Chang and Y. Araki, Proc. Inst. Civ. Eng., 169, 87 (2016).
  2. M. Mishra and A. Anish Ravindra, Int. J. Struct. Civ. Engg. Res., 3, 96 (2014).
  3. I. Nikulin, T. Sawaguchi, K. Ogawa and K. Tsuzaki, Acta Mater., 105, 207 (2016). https://doi.org/10.1016/j.actamat.2015.12.002
  4. O. Grässel, L. Krüger, G. Frommeyer and L. Meyer, Int. J. Plast., 16, 1391 (2000). https://doi.org/10.1016/S0749-6419(00)00015-2
  5. A. Sato, E. Chishima, K. Soma and T. Mori, Acta Metall., 30, 1177 (1982). https://doi.org/10.1016/0001-6160(82)90011-6
  6. A. Sato, Y. Yamaji and T. Mori, Acta Metall., 34, 287 (1986). https://doi.org/10.1016/0001-6160(86)90199-9
  7. A. Cladera, B. Weber, C. Leinenbach, C. Czaderski, M. Shahverdi and M. Motavalli, Constr. Build. Mater., 63, 281 (2014). https://doi.org/10.1016/j.conbuildmat.2014.04.032
  8. P. Huang, H. Peng, S. Wang, T. Zhou and Y. Wen, Mater. Charact., 118, 22 (2016). https://doi.org/10.1016/j.matchar.2016.05.012
  9. J. Wan and S. Chen, Curr. Opin. Solid State Mater. Sci., 9, 303 (2005). https://doi.org/10.1016/j.cossms.2006.07.005
  10. H. Li, D. Dunne and N. Kennon, Mater. Sci. Eng. A, 273-275, 517 (1999). https://doi.org/10.1016/S0921-5093(99)00391-3
  11. Y. H. Wen, W. Zhang, N. Li, H. B. Peng and L. R. Xiong, Acta Mater., 55, 6526 (2007). https://doi.org/10.1016/j.actamat.2007.08.005
  12. W. J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli and C. Leinenbach, Mater. Sci. Eng. A, 581, 1 (2013). https://doi.org/10.1016/j.msea.2013.06.002
  13. H. Otsuka, H. Yamada, T. Maruyama, H. Tanahashi, S. Matsuda and M. Murakami, ISIJ Int., 30, 674 (1990). https://doi.org/10.2355/isijinternational.30.674
  14. A. Druker, A. Baruj and J. Malarría, Mater. Charact., 61, 603 (2010). https://doi.org/10.1016/j.matchar.2010.03.005
  15. B. Jiang, X. Qi, W. Zhou, Z. L. Xi and T. Y. Hsu, Scr. Mater., 34, 1437 (1996). https://doi.org/10.1016/1359-6462(95)00673-7
  16. H. Kubo, K. Nakamura, S. Farjami and T. Maruyama, Mater. Sci. Eng. A, 378, 343 (2004). https://doi.org/10.1016/j.msea.2003.10.359
  17. A. V. Druker, A. Perotti, I. Esquivel and J. Malarría, Mater. Des., 56, 878 (2014). https://doi.org/10.1016/j.matdes.2013.11.032
  18. W. J. Lee, B. Weber and C. Leinenbach, Constr. Build. Mater., 95, 600 (2015). https://doi.org/10.1016/j.conbuildmat.2015.07.098
  19. N. Bergeon, S. Kajiwara and T. Kikuchi, Acta Mater., 48, 4053 (2000). https://doi.org/10.1016/S1359-6454(00)00187-7
  20. A. Baruj, T. Kikuchi and S. Kajiwara, Mater. Sci. Eng. A, 378, 337 (2004). https://doi.org/10.1016/j.msea.2003.10.358
  21. D. Wang, D. Liu, Z. Dong, W. Liu and J. Chen, Mater. Sci. Eng. A, 315, 174 (2001). https://doi.org/10.1016/S0921-5093(01)00959-5
  22. O. Matsumura, T. Sumi, N. Tamura, K. Sakao, T. Furukawa and H. Otsuka, Mater. Sci. Eng. A279, 279, 201 (2000). https://doi.org/10.1016/S0921-5093(99)00644-9
  23. A. Druker, P. La Roca, P. Vermaut, P. Ochin and J. Malarría, Mater. Sci. Eng. A, 556, 936 (2012). https://doi.org/10.1016/j.msea.2012.07.097
  24. T. Sawaguchi, T. Kikuchi, F. Yin and S. Kajiwara, Mater. Sci. Eng. A, 438-440, 796 (2006). https://doi.org/10.1016/j.msea.2006.01.119
  25. M. Koster, W. J. Lee, M. Schwarzenberger and C. Leinenbach, Mater. Sci. Eng. A, 637, 29 (2015). https://doi.org/10.1016/j.msea.2015.04.028
  26. V. Fuster, a. V. Druker, a. Baruj, J. Malarría and R. Bolmaro, Mater. Charact., 109, 128 (2015). https://doi.org/10.1016/j.matchar.2015.09.026
  27. L. Kang, D. Zhizhong, L. Yongchang and Z. Lin, Smart Mater. Struct., 22, 1 (2013).
  28. L. Kang, D. Zhizhong, L. Yongchang and Z. Lin, Smart Mater. Struct., 22, 45002 (2013). https://doi.org/10.1088/0964-1726/22/4/045002
  29. W. J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli and C. Leinenbach, Smart Mater. Struct., 22, 125037 (2013). https://doi.org/10.1088/0964-1726/22/12/125037
  30. A. Baruj, T. Kikuchi, S. Kajiwara and N. Shinya, Mater. Sci. Eng. A, 378, 333 (2004). https://doi.org/10.1016/j.msea.2003.10.357
  31. T. Sawaguchi et al., Mater. Trans., 47, 580 (2006). https://doi.org/10.2320/matertrans.47.580
  32. H. Li, F. Yin, T. Sawaguchi, K. Ogawa, X. Zhao and K. Tsuzaki, Mater. Sci. Eng. A, 494, 217 (2008). https://doi.org/10.1016/j.msea.2008.05.013
  33. T. Sawaguchi et al., Scr. Mater., 54, 1885 (2006). https://doi.org/10.1016/j.scriptamat.2006.02.013
  34. Y. H. Wen, L. R. Xiong, N. Li and W. Zhang, Mater. Sci. Eng. A, 474, 60 (2008). https://doi.org/10.1016/j.msea.2007.05.043
  35. W. J. Lee, B. Weber, G. Feltrin, C. Czaderski, M. Motavalli and C. Leinenbach, Mater. Sci. Eng. A, 581, 1 (2013). https://doi.org/10.1016/j.msea.2013.06.002
  36. H. C. Lin, K. M. Lin, Y. C. Chuang and T. S. Chou, J. Alloys Compd., 306, 186 (2000). https://doi.org/10.1016/S0925-8388(00)00762-3
  37. A. Sato, K. Soma and T. Mori, Acta Metall., 30, 1901 (1982). https://doi.org/10.1016/0001-6160(82)90030-X
  38. L. Huijun, "The development of new iron based shape memory alloys," 1996.
  39. H. C. Lin, K. M. Lin, C. S. Lin and T. M. Ouyang, Corros. Sci., 44, 2013 (2002). https://doi.org/10.1016/S0010-938X(02)00027-6
  40. T. Bouraoui, F. Jemal and T. Ben Zineb, Strength Mater., 40, 203 (2008). https://doi.org/10.1007/s11223-008-9012-4
  41. A. Sato, H. Kubo and T. Maruyama, Mater. Trans., 47, 571 (2006). https://doi.org/10.2320/matertrans.47.571
  42. C. Czaderski, B. Weber, M. Shahverdi, M. Motavalli, C. Leinenbach and W. Lee, Smar 2015, no. September, 2015.
  43. K. Ogawa and S. Kajiwara, Materials Transactions, 34, 1169 (1993). https://doi.org/10.2320/matertrans1989.34.1169
  44. T. Sawaguchi et al., Scr. Mater., 99, 49 (2015). https://doi.org/10.1016/j.scriptamat.2014.11.024
  45. K. Tsuzaki, K. Fukuda, M. Koyama and H. Matsunaga, Scr. Mater., 113, 6 (2016). https://doi.org/10.1016/j.scriptamat.2015.10.016
  46. T. Sawaguchi, T. Maruyama, H. Otsuka, A. Kushibe, Y. Inoue and K. Tsuzaki, Mater. Trans., 57, 283 (2016). https://doi.org/10.2320/matertrans.MB201510
  47. M. Koyama, T. Sawaguchi, K. Ogawa, T. Kikuchi and M. Murakami, Mater. Sci. Eng. A, 497, 353 (2008). https://doi.org/10.1016/j.msea.2008.07.026
  48. X. Zhang, T. Sawaguchi, K. Ogawa, F. Yin and X. Zhao, J. Alloys Compd., 577, S533 (2013). https://doi.org/10.1016/j.jallcom.2011.12.109
  49. R. O. Ritchie and J. Lankford, Mater. Sci. Eng., 84, 11 (1986). https://doi.org/10.1016/0025-5416(86)90217-X
  50. U. Sari, E. Güler, T. Kirindi and M. Dikici, J. Phys. Chem. Solids, 70, 1226 (2009). https://doi.org/10.1016/j.jpcs.2009.06.013
  51. H. Fu, W. Li, S. Song, Y. Jiang and J. Xie, J. Alloys Compd., 684, 556 (2016). https://doi.org/10.1016/j.jallcom.2016.05.209
  52. D. Lee, T. Omori and R. Kainuma, J. Alloys Compd., 617, 120 (2014). https://doi.org/10.1016/j.jallcom.2014.07.136
  53. Y. Geng et al., Journal of Alloys and Compounds, 628, 287 (2015). https://doi.org/10.1016/j.jallcom.2014.12.172
  54. H. Fu, H. Zhao, S. Song, Z. Zhang and J. Xie, J. Alloys Compd., 686, 1008 (2016). https://doi.org/10.1016/j.jallcom.2016.06.273
  55. V. Torra, a. Isalgue, F. C. Lovey and M. Sade, J. Therm. Anal. Calorim., 119, 1475 (2015). https://doi.org/10.1007/s10973-015-4405-7
  56. H. Fu, H. Zhao, S. Song, Z. Zhang and J. Xie, J. Alloys Compd., 686, 1008 (2016). https://doi.org/10.1016/j.jallcom.2016.06.273
  57. A. Evirgen, J. Ma, I. Karaman, Z. P. Luo and Y. I. Chumlyakov, Scr. Mater., 67, 475 (2012). https://doi.org/10.1016/j.scriptamat.2012.06.006
  58. L. W. Tseng et al., Acta Mater., 97, 234 (2015). https://doi.org/10.1016/j.actamat.2015.06.061
  59. J. Ma, B. Kockar, A. Evirgen, I. Karaman, Z. P. Luo and Y. I. Chumlyakov, Acta Mater., 60, 2186 (2012). https://doi.org/10.1016/j.actamat.2011.12.047
  60. P. Krooss et al., Acta Mater., 79, 126 (2014). https://doi.org/10.1016/j.actamat.2014.06.019
  61. Y. I. Chumlyakov, I. V. Kireeva, O. A. Kutz, A. S. Turabi, H. E. Karaca and I. Karaman, Scr. Mater., 119, 43 (2016). https://doi.org/10.1016/j.scriptamat.2016.03.027
  62. D. Lee, T. Omori and R. Kainuma, Journal of Alloys and Compounds, 617, 120 (2014). https://doi.org/10.1016/j.jallcom.2014.07.136
  63. L. W. Tseng, J. Ma, I. Karaman, S. J. Wang and Y. I. Chumlyakov, Scr. Mater., 101, 1 (2015). https://doi.org/10.1016/j.scriptamat.2014.12.021
  64. J. Mino, V. Komanicky, M. Durisin, K. Saksl, J. Kovac and R. Varga, 51, 2014 (2015).
  65. T. Niendorf et al., Metall. Mater. Trans. A, 46, 2829 (2015). https://doi.org/10.1007/s11661-015-2932-2
  66. A. Ojha and H. Sehitoglu, Int. J. Plast., 86, 93 (2016). https://doi.org/10.1016/j.ijplas.2016.08.003
  67. Z. Lodin, J. Blumajer and V. Mares, Acta Histochem., 63, 74 (1978). https://doi.org/10.1016/S0065-1281(78)80009-9
  68. S. Kajiwara and T. Kikuchi, Acta Metall. Mater., 38, 847 (1990). https://doi.org/10.1016/0956-7151(90)90038-I
  69. H. E. Karaca, I. Karaman, Y. I. Chumlyakov, D. C. Lagoudas and X. Zhang, Scr. Mater., 51, 261 (2004). https://doi.org/10.1016/j.scriptamat.2004.04.002
  70. C. Craciunescu, Y. Kishi, T. Lograsso and M. Wuttig, Scr. Mater., 47, 285 (2002). https://doi.org/10.1016/S1359-6462(02)00148-3
  71. H. E. Karaca, I. Karaman, B. Basaran, Y. I. Chumlyakov and H. J. Maier, Acta Mater., 54, 233 (2006). https://doi.org/10.1016/j.actamat.2005.09.004
  72. H. E. Karaca, I. Karaman, B. Basaran, D. C. Lagoudas, Y. I. Chumlyakov and H. J. Maier, Acta Mater., 55, 4253 (2007). https://doi.org/10.1016/j.actamat.2007.03.025
  73. M. Wuttig, J. Li and C. Craciunescu, Scr. Mater., 44, 2393 (2001). https://doi.org/10.1016/S1359-6462(01)00939-3
  74. A. A. Likhachev and K. Ullakko, Phys. Lett. A, 275, 142 (2000). https://doi.org/10.1016/S0375-9601(00)00561-2
  75. O. Söderberg, X. W. Liu, P. G. Yakovenko, K. Ullakko and V. K. Lindroos, Mater. Sci. Eng. A, 273-275, 543 (1999). https://doi.org/10.1016/S0921-5093(99)00396-2
  76. X. Huang, S. Chen, T. Y. Hsu and X. U. Zuyao, J. Mater. Sci., 39, 6857 (2004). https://doi.org/10.1023/B:JMSC.0000045620.49206.6a
  77. B. C. Maji, C. M. Das, M. Krishnan and R. K. Ray, Corros. Sci., 48, 937 (2006). https://doi.org/10.1016/j.corsci.2005.02.024
  78. B. Q. Hu, P. K. Bai, Z. Z. Dong and J. Cheng, Trans. Nonferrous Met. Soc. China English Ed., 19, 149 (2009). https://doi.org/10.1016/S1003-6326(08)60243-5
  79. C. A. Della Rovere, J. H. Alano, J. Otubo and S. E. Kuri, J. Alloys Compd., 509, 5376 (2011). https://doi.org/10.1016/j.jallcom.2011.02.051
  80. A. Charfi, F. Gamaoun, T. Bouraoui, C. Bradai and B. Normand, 3rd Int. Conf. Manuf. Sci. Eng. ICMSE 2012, 476-478, 2162 (2012).
  81. C. A. Della Rovere, J. H. Alano, R. Silva, P. A. P. Nascente, J. Otubo and S. E. Kuri, Corros. Sci., 57, 154 (2012). https://doi.org/10.1016/j.corsci.2011.12.022
  82. C. A. Della Rovere, J. H. Alano, R. Silva, P. A. P. Nascente, J. Otubo and S. E. Kuri, Mater. Chem. Phys., 133, 668 (2012). https://doi.org/10.1016/j.matchemphys.2012.01.049
  83. Z. Z. Dong, T. Sawaguchi, S. Kajiwara, T. Kikuchi, S. H. Kim and G. C. Lee, Mater. Sci. Eng. A, 438-440, 800 (2006). https://doi.org/10.1016/j.msea.2005.12.054