DOI QR코드

DOI QR Code

Chromium Carbide Coating on Diamond Particle Using Molten Salts

용융염을 이용한 다이아몬드 표면의 크롬카바이드 코팅

  • Jeong, Young-Woo (Department of LED Convergence Engineering, Specialized Graduate School Science & Technology Convergence, Pukyong National University) ;
  • Kim, Hwa-Jung (Interdisciplinary program of LED and Solid State Lighting Engineering, Pukyoung National University) ;
  • Ahn, Yong-Sik (Department. of Materials Science and Engineering, Pukyong National University) ;
  • Choi, Hee-Lack (Department. of Materials Science and Engineering, Pukyong National University)
  • 정영우 (부경대학교 과학기술융합전문대학원 LED융합공학전공) ;
  • 김화정 (부경대학교 LED공학협동과정) ;
  • 안용식 (부경대학교 재료공학과) ;
  • 최희락 (부경대학교 재료공학과)
  • Received : 2018.05.24
  • Accepted : 2018.06.27
  • Published : 2018.07.27

Abstract

For diamond/metal composites it is better to use diamond particles coated with metal carbide because of improved wettability between the diamond particles and the matrix. In this study, the coating of diamond particles with a chromium carbide layer is investigated. On heating diamond and chromium powders at $800{\sim}900^{\circ}C$ in molten salts of LiCl, KCl, $CaCl_2$, the diamond particles are coated with $Cr_7C_3$. The surfaces of the diamond powders are analyzed using X-ray diffraction and scanning electron microscopy. The average thickness of the $Cr_7C_3$ coating layers is calculated from the result of the particle size analysis. By using the molten salt method, the $Cr_7C_3$ coating layer is uniformly formed on the diamond particles at a relatively low temperature at which the graphitization of the diamond particles is avoided. Treatment temperatures are lower than those in the previously proposed methods. The coated layer is thickened with an increase in heating temperature up to $900^{\circ}C$. The coating reaction of the diamond particles with chromium carbide is much more rapid in $LiCl-KCl-CaCl_2$ molten salts than with the molten salts of $KCl-CaCl_2$.

Keywords

References

  1. T. Okada, K. Fukuoka, Y. Arata, S. Yonezawa, H. Kiyokawa and M. Takashima, Diamond Relat. Mater., 52, 11 (2015). https://doi.org/10.1016/j.diamond.2014.11.008
  2. E. Breval J. Cheng and D. K. Agrawal, J. Am. Ceram. Soc., 83, 2106 (2000).
  3. S. Ma, N. Zhao, C. Shi, E. Liu, C. He, F. He and L. Ma, Appl. Surf. Sci., 402, 372 (2017). https://doi.org/10.1016/j.apsusc.2017.01.078
  4. A. Rape, Ph. D. Thesis, p.57, The Pennsylvania State University, Philadelphia (2015).
  5. K. Chu, Z. Liu, C. Jia, H. Chen, X. Liang, W. Gao, W. Tian and H. Guo, J. Alloy. Compd., 490, 453 (2010). https://doi.org/10.1016/j.jallcom.2009.10.040
  6. C. Xue, J. K. Yu and X. M. Zhu, Mater. Design, 32, 4225 (2011). https://doi.org/10.1016/j.matdes.2011.04.032
  7. J. Ge, S. Wang, F. Zhang, L. Zhang, H. Jiao, H. Zhu and S. Jiao, Appl. Surf. Sci., 347, 401 (2015). https://doi.org/10.1016/j.apsusc.2015.04.119
  8. Donald M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, 2th ed., p.237, Elsevier, (2010).
  9. K. E. Spear and J. P. Dismukes, Synthetic Diamond: Emerging CVD Science and Technology, 1st ed., p.33, The Electrochemical Society (1995).
  10. H. O. Pierson, Handbook of chemical vapor deposition: principles, technology and applications, 2nd ed., p.25, William Andrew (1999).
  11. Y. J. Baek, Ceramist, 8, 311 (1993).
  12. George J. Janz, Molten Salts Handbook, first ed., Elsevier, p.89, (1969).
  13. Costas Sikalidis, Advances in Ceramics - Synthesis and Characterization, Processing and Specific Applications, INTECH, p.75, (2011).
  14. N. Sun, Y. Zhang, F. Jiang, S. Lang and M. Xia, Fusion Eng. Des., 89, 2529 (2014). https://doi.org/10.1016/j.fusengdes.2014.05.027
  15. J. H. Lee, Ph. D. Thesis, p.12-14, InHa University, Seoul (2009).
  16. K. S. Kim, Ph. D. Thesis, p.23-26, Pusan national university, Busan (2003).
  17. Y. S. Lee, B. J. Oh and B. S. Rhee, Korean Soc. Comp. Mater., 10, 46 (1997).
  18. W. S. Hong, H. S. Kim, N. C. Park and K. B. Kim, J. KWJS, 25, 82 (2007).