DOI QR코드

DOI QR Code

Mechanistic Studies on the Hydrogen Evolution and Permeation of Ultra-Strong Automotive Steel in Neutral Chloride Environments

중성의 염화물 환경 내 자동차용 초고강도강의 부식반응에 기인한 수소원자의 발생 및 투과 메커니즘

  • Hwang, Eun Hye (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Ryu, Seung Min (Department of Advanced Materials Engineering, Sunchon National University) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 황은혜 (순천대학교 신소재공학과) ;
  • 류승민 (순천대학교 신소재공학과) ;
  • 김성진 (순천대학교 신소재공학과)
  • Received : 2018.06.12
  • Accepted : 2018.06.28
  • Published : 2018.07.27

Abstract

Hydrogen evolution on a steel surface and subsequent hydrogen diffusion into the steel matrix are evaluated using an electrochemical permeation test with no applied cathodic current on the hydrogen charging side. In particular, cyclic operation in the permeation test is also conducted to clarify the corrosion-induced hydrogen evolution behavior. In contrast to the conventional perception that the cathodic reduction reaction on the steel in neutral aqueous environments is an oxygen reduction reaction, this study demonstrates that atomic hydrogen may be generated on the steel surface by the corrosion reaction, even in a neutral environment. Although a much lower permeation current density and significant slower diffusion kinetics of hydrogen are observed compared to the results measured in acidic environments, they contribute to the increase in the embrittlement index. This study suggests that the research on hydrogen embrittlement in ultra-strong steels should be approached from the viewpoint of corrosion reactions on the steel surface and subsequent hydrogen evolution/diffusion behavior.

Keywords

References

  1. Y. Mukai, Kobelco Technol. Rev., 26, 26 (2005).
  2. S. Brauser, L. A. Pepke, G. Weber, M. Rethmeier, Mater. Sci. Eng., A, 527, 7099 (2010). https://doi.org/10.1016/j.msea.2010.07.091
  3. JP. Hirth, Metall. Trans. A, 11A, 861 (1980).
  4. M. Wang, E. Akiyama and K. Tsuzaki, Scr. Mater., 52, 403 (2005). https://doi.org/10.1016/j.scriptamat.2004.10.023
  5. G. Sandoz, Met. Trans., 3, 1169 (1972). https://doi.org/10.1007/BF02642449
  6. S. Takagi, Y. Toji, M. Yoshino and K. Hasegawa, ISIJ Int., 52, 316 (2012). https://doi.org/10.2355/isijinternational.52.316
  7. G. Lovicu, M. Bottazzi, F. D’Aiuto, M. D. Sanctis, A. Dimatteo, C. Santus and R. Valentini, Metall. Mater. Trans. A, 43, 4075 (2012). https://doi.org/10.1007/s11661-012-1280-8
  8. T. Shiraga, N. Ishikawa, M. Ishiguro, E. Yamashita and S. Mizoguchi, Tetsu-to-Hagane, 82, 177 (1996). https://doi.org/10.2355/tetsutohagane1955.82.3_177
  9. J. Li, J. Wu, Z. Wang, S. Zhang, X. Wu, Y. Huang and X. Li, Int. J. Hydrogen Energy, 42, 22175 (2017). https://doi.org/10.1016/j.ijhydene.2017.03.087
  10. S. Komazaki, A. Koyama and T. Misawa, Mater. Trans., 43, 2213 (2002). https://doi.org/10.2320/matertrans.43.2213
  11. H. K. D. H. Bhadeshia, ISIJ Int., 56, 24 (2016). https://doi.org/10.2355/isijinternational.ISIJINT-2015-430
  12. X. Zhu, W. Li, T. Y. Hsu, S. Zhou, L. Wang and X. Jin, Scr. Mater., 97, 21 (2015). https://doi.org/10.1016/j.scriptamat.2014.10.030
  13. E. H. Hwang, H. G. Seong and S. J. Kim, Korean J. Met. Mater., to be submitted (2018).
  14. ISO 17081, Method of Measurement of Hydrogen Permeation and Determination of Hydrogen Uptake and Transport in Metals by an Electrochemical Technique (2004).
  15. S. J. Kim and K. Y. Kim, Scr. Mater., 66, 1069 (2012). https://doi.org/10.1016/j.scriptamat.2012.03.001
  16. ASTM G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Ma- terials to Environmentally Assisted Cracking (2013).
  17. S. J. Kim, J. S. Park, E. H. Hwang, S. M. Ryu, H. G. Seong and Y. R. Cho, Int. J. Hydrogen Energy, to be submitted (2018).
  18. T. Tsuru, Y. Huang, Md. R. Ali and A. Nishikata, Corros. Sci., 47, 2431 (2005). https://doi.org/10.1016/j.corsci.2004.10.006
  19. E. Akiyama, K. Matsukado, M. Wang and K. Tsuzaki, Corros. Sci., 52, 2758 (2010). https://doi.org/10.1016/j.corsci.2009.11.046
  20. E. Akiyama, K. Matsukado, S. Li and K. Tsuzaki, Appl. Surf. Sci., 257, 8275 (2011). https://doi.org/10.1016/j.apsusc.2011.03.037
  21. T. Kamimura, S. Hara, H. Miyuki, M. Yamashita and M. Uchida, Corros. Sci., 48, 2799 (2006). https://doi.org/10.1016/j.corsci.2005.10.004