DOI QR코드

DOI QR Code

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh (Department of Plant Protection, Faculty of Agriculture, University of Kurdistan) ;
  • Harighi, Behrouz (Department of Plant Protection, Faculty of Agriculture, University of Kurdistan)
  • Received : 2017.07.22
  • Accepted : 2018.02.26
  • Published : 2018.06.01

Abstract

In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Keywords

References

  1. Anonymous. 2013. The Approved List of biological agents. 3rd ed. Health and Safety Executive, UK. URL http://www.hse.gov.uk/pubns/misc208.pdf/.
  2. Ahmad, F., Ahmad, I. and Khan, M. S. 2008. Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol. Res. 163:173-181. https://doi.org/10.1016/j.micres.2006.04.001
  3. Alstrom, S. and Burns, R. G. 1989. Cyanide production by rhizobacteria as a possible mechanism of plant growth inhibition. Biol. Fertil. Soil 7:232-238. https://doi.org/10.1007/BF00709654
  4. Aliye, N., Fininsa, C. and Hiskias, Y. 2008. Evaluation of rhizosphere bacterial antagonists for their potential to bioprotect potato (Solanum tuberosum) against bacterial wilt (Ralstonia solanacearum). Biol. Control 47:282-288. https://doi.org/10.1016/j.biocontrol.2008.09.003
  5. Amaresan, N., Jayakumar, V., Kumar, K. and Thajudin, N. 2012. Isolation and characterization of plant growth promoting endophytic bacteria and their effect on tomato (Lycopersicon esculentum) and chilli (Capsicum annuum) seedling growth. Ann. Microbiol. 62:805-810. https://doi.org/10.1007/s13213-011-0321-7
  6. Anand, R., Grayston, S. and Chanway, C. 2013. $N_2$-Fixation and seedling growth promotion of Lodgepole Pine by endophytic Paenibacillus polymyxa. Microb. Ecol. 66:369-374. https://doi.org/10.1007/s00248-013-0196-1
  7. Bacon, C. W. and Hinton, D. M. 2006. Bacterial endophytes: the endophytic niche, its occupants, and its utility. In: Plant-Associated Bacteria ed. by S. S. Gnanamanickam, pp. 155-194. Springer, Dordrecht.
  8. Bakker, A. W. and Schippers, B. 1987. Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp.-mediated plant growth-stimulation. Soil. Biol. Biochem. 19:451-457. https://doi.org/10.1016/0038-0717(87)90037-X
  9. Bensidhoum, L., Nabti, E., Tabli, N., Kupferschmied, P., Weiss, A., Rothballer, M., Schmid, M., Keel, C. and Hartmann, A. 2016. Heavy metal tolerant Pseudomonas protegens isolates from agricultural well water in northeastern Algeria with growth promoting, insecticidal and antifungal activities. Eur. J. Soil. Biol. 75:38-46. https://doi.org/10.1016/j.ejsobi.2016.04.006
  10. Berg, G., Krechel, A., Ditz, M., Sikora, R. A., Ulrich, A. and Hallmann, J. 2005. Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol. Ecol. 51:215-229. https://doi.org/10.1016/j.femsec.2004.08.006
  11. Bottini, R., Cassan, F. and Piccoli, P. 2004. Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl. Microbiol. Biotechnol. 65:497-503.
  12. Chebotar, V. K., Malfanova, N. V., Shcherbakov, A. V., Ahtemova, G. A., Borisov, A. Y., Lugtenberg, B. and Tikhonovich, I. A. 2015. Endophytic bacteria in microbial preparations that improve plant development (review). Appl. Biochem. Microbiol. 51:271-277. https://doi.org/10.1134/S0003683815030059
  13. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  14. Deng, Z. S., Zhao, L. F., Kong, Z. Y., Yang, W. Q., Lindstrom, K., Wang, E. T. and Wei, G. H. 2011. Diversity of endophytic bacteria within nodules of the Sphaerophysa salsula in different regions of Loess Plateau in China. FEMS Microbiol. Ecol. 76:463-475. https://doi.org/10.1111/j.1574-6941.2011.01063.x
  15. Dobereiner, J., Baldani, V. and Baldani, J. 1995. Como isolar e identifcar bacterias diazotrofcas de plantas nao-leguminosas. EMBRAPA-SPI, Brasilia, Brazil, EMBRAPA-CNPAB, Itagui, Colombia. 60 pp.
  16. Doty, S. L., Oakley, B., Xin, G., Kang, J. W., Singleton, G., Khan, Z., Vajzovic, A. and Staley, J. T. 2009. Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23-33. https://doi.org/10.1007/BF03179967
  17. Ganz, H. H., Turner, W. C., Brodie, E. L., Kusters, M., Shi, Y., Sibanda, H., Torok, T. and Getz, W. M. 2014. Interactions between Bacillus anthracis and plants may promote Anthrax transmission. PLoS Negl. Trop. Dis. 8:e2903. https://doi.org/10.1371/journal.pntd.0002903
  18. Gutierrez Manero, F. J., Acero, N., Lucas, J. A. and Probanza, A. 1996. The infuence of native rhizobacteria on European alder (Alnus glutinosa (L.) Gaertn.) growth. Plant Soil 182:67-74. https://doi.org/10.1007/BF00010996
  19. Hall, T. A. 1999. BioEdit: a user-friendly biological sequence aligment editor and analysis program for windows 95-98/NT. Nucl. Acids. Symp. Ser. 41:95-98.
  20. Hardoim, P. R., Hardoim, C. C. P., van Overbeek, L. S. and van Elsas, J. D. 2012. Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 7:e30438. https://doi.org/10.1371/journal.pone.0030438
  21. Holbrook, A. A., Edge, W. J. W. and Bailey, P. 1961. Spectrophotometric method for determination of Gibberellic acid. Adv. Chem. 28:159-167.
  22. Joo, G. J., Kim, Y. M., Lee, I. J., Song, K. S. and Rhee, I. K. 2004. Growth promotion of red pepper plug seedlings and the production of gibberellins by Bacillus cereus, Bacillus macrolides and Bacillus pumilus. Biotechnol. Lett. 26:487-491. https://doi.org/10.1023/B:BILE.0000019555.87121.34
  23. Khan, Z. and Doty, S. L. 2009. Characterization of bacterial endophytes of sweet potato plants. Plant Soil 322:197-207. https://doi.org/10.1007/s11104-009-9908-1
  24. Kheirandish, Z. and Harighi, B. 2015. Evaluation of bacterial antagonists of Ralstonia solanacearum, causal agent of bacterial wilt of potato. Biol. Control 86:14-19. https://doi.org/10.1016/j.biocontrol.2015.03.007
  25. Koo, S. Y. and Cho, K. S. 2009. Isolation and characterization of a plant growth-promoting rhizobacterium, Serratia sp. SY5. J. Microbiol. Biotech. 19:1431-1438.
  26. Kuan, K. B., Othman, R., Rahim, K. A. and Shamsuddin, Z. H. 2016. Inoculation to enhance vegetative growth, Nitrogen fxation and Nitrogen remobilization of Maize under greenhouse conditions. PLoS One 11:0152478.
  27. Kumar, P., Dubey, R. C. and Maheshwari, D. K. 2012. Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol. Res. 167:493-499. https://doi.org/10.1016/j.micres.2012.05.002
  28. Liu, X., Jia, J., Atkinson, S., Camara, M., Gao, K., Li, H. and Cao, J. 2010. Biocontrol potential of an endophytic Serratia sp. G3 and its mode of action. World J. Microbiol. Biotechnol. 26:1465-1471. https://doi.org/10.1007/s11274-010-0321-y
  29. Loiret, F. G., Ortega, E., Kleiner, D., Ortega-Rodes, P., Rodes, R. and Dong, Z. 2004. A putative new endophytic nitrogen-fixing bacterium Pantoea sp. from sugarcane. J. Appl. Microbiol. 97:504-511. https://doi.org/10.1111/j.1365-2672.2004.02329.x
  30. Loper, J. E., Kobayashi, D. Y. and Paulsen, I. T. 2007. The genomic sequence of Pseudomonas fluorescens Pf-5: insights into biological control. Phytopathology 97:233-238. https://doi.org/10.1094/PHYTO-97-2-0233
  31. Madmony, A., Chernin, L., Pleban, S., Peleg, E. and Riov, J. 2005. Enterobacter cloacae, an obligatory endophyte of pollen grains of mediterranean pines. Folia Microbiol. (Praha) 50:209-216. https://doi.org/10.1007/BF02931568
  32. Mozaffarian, V. 1998. A dictionary of Iranian plant names. Farhang Moaser, Tehran, Iran. 365 pp.
  33. Naik, P. R., Raman, G., Narayanan, K. B. and Sakthivel, N. 2008. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil. BMC Microbiol. 8:230. https://doi.org/10.1186/1471-2180-8-230
  34. Pirttila, A. M. and Frank, A. C. 2011. Endophytes of forest trees, biology and application. Springer, The Netherlands. 319 pp.
  35. Rahman, A., Sitepu, I. R., Tang, S. Y. and Hashidoko, Y. 2010. Salkowski's reagent test as a primary screening index for functionalities of Rhizobacteria isolated from wild dipterocarp saplings growing naturally on medium-strongly acidic tropical peat soil. Biosci. Biotechnol. Biochem. 74:2202-2208. https://doi.org/10.1271/bbb.100360
  36. Ramette, A., Frapolli, M., Fischer-Le Saux, M., Gruffaz, C., Meyer, J. M., Defago, G., Sutra, L. and Moenne Loccoz, Y. 2011. Pseudomonas protegens sp. nov., widespread plant-protecting bacteria producing the biocontrol compounds 2,4-diacetylphloroglucinol and pyoluteorin. Syst. Appl. Microbiol. 34:180-188. https://doi.org/10.1016/j.syapm.2010.10.005
  37. Reinhold-Hurek, B. and Hurek, T. 2011. Living inside plants: bacterial endophytes. Curr. Opin. Plant Biol. 14:435-443. https://doi.org/10.1016/j.pbi.2011.04.004
  38. Ren, J. H., Li, H., Wang, Y. F., Ye, J. R., Yan, A. Q. and Wu, X. Q. 2013. Biocontrol potential of an endophytic Bacillus pumilus JK-SX001 against poplar canker. Biol. Control 67:421-430. https://doi.org/10.1016/j.biocontrol.2013.09.012
  39. Rijavec, T. and Lapanje, A. 2016. Hydrogen cyanide in the rhizosphere: not suppressing plant pathogens, but rather regulating availability of phosphate. Front. Microbiol. 7:1785.
  40. Rodriguez, H. and Fraga, R. 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17:319-339. https://doi.org/10.1016/S0734-9750(99)00014-2
  41. Rosenblueth, M. and Martinez-Romero, E. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant-Microbe Interact. 19:827-837. https://doi.org/10.1094/MPMI-19-0827
  42. Ryan, R. P., Monchy, S., Cardinale, M., Taghavi, S., Crossman, L., Avison, M. B., Berg, G., van der Lelie, D. and Dow, J. M. 2009. The versatility and adaptation of bacteria from the genus Stenotrophomonas. Nat. Rev. Microbiol. 7:514-525. https://doi.org/10.1038/nrmicro2163
  43. Saidi, S., Chebil, S., Gtari, M. and Mhamdi, R. 2013. Characterization of root-nodule bacteria isolated from Vicia faba and selection of plant growth promoting isolates. World J. Microbiol. Biotech. 29:1099-1106. https://doi.org/10.1007/s11274-013-1278-4
  44. Schaad, N. W., Jones, J. B. and Chun, W. 2001. Laboratory guide for identification of plant pathogenic Bacteria. 3rd ed. APS press, St. Paul, MN, USA. 373 pp.
  45. Schippers, B., Bakker, A. W., Bakker, A. H. M. and Van Peer, R. 1990. Beneficial and deleterious effects of HCN-producing pseudomonads on rhizosphere interactions. Plant Soil 129:75-83. https://doi.org/10.1007/BF00011693
  46. Schwyn, B. and Neilands, J. B. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  47. Sgroy, V., Cassan, F., Masciarelli, O., Del Papa, M. F., Lagares, A. and Luna, V. 2009. Isolation and characterization of endo-phytic plant growth promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Appl. Microbiol. Biotech. 85:371-381. https://doi.org/10.1007/s00253-009-2116-3
  48. Shen, S. Y. and Fulthorpe, R. 2015. Seasonal variation of bacterial endophytes in urban trees. Front. Microbiol. 6:427.
  49. Swofford, D. L. 2003. PAUP* 4.0b10: phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA, USA.
  50. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J. and van der Lelie, D. 2009. Genome survey and characterization of endophytic bacteria exhibiting a benefcial effect on growth and development of poplar trees. Appl. Environ. Microbiol. 75:748-757. https://doi.org/10.1128/AEM.02239-08
  51. Ulrich, K., Ulrich, A. and Ewald, D. 2007. Diversity of endophytic bacterial communities in poplar grown under feld conditions. FEMS Microbiol. Ecol. 63:169-180.
  52. Ulrich, K., Ulrich, A. and Ewald, D. 2008. Paenibacillus- a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tiss. Organ Cult. 93:347-351. https://doi.org/10.1007/s11240-008-9367-z
  53. Vacheron, J., Desbrosses, G., Bouffaud, M. L., Touraine, B., Moenne-Loccoz, Y., Muller, D., Legendre, L., Wisniewski-Dye, F. and Prigent-Combaret, C. 2013. Plant growth-promoting rhizobacteria and root system functioning. Front. Plant Sci. 4:356.
  54. Wang, X., Mavrodi, D. V., Ke, L., Mavrodi, O. V., Yang, M., Thomashow, L. S., Zheng, N., Weller, D. M. and Zhang, J. 2015. Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb. Biotechnol. 8:404-418. https://doi.org/10.1111/1751-7915.12158
  55. Weisburg, W. G., Barns, S. M., Pelletier, D. A. and Lane, D. J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173:697-703. https://doi.org/10.1128/jb.173.2.697-703.1991
  56. Zho, B., Liu, H., Tian, W. X., Fan, X. Y., Li, B., Zhou, X. P., Jin, G. L. and Xie, G. L. 2012. Genome sequence of Stenotrophomonas maltophilia RR-10, isolated as an endophyte from rice root. J. Bacteriol. 194:1280-1281. https://doi.org/10.1128/JB.06702-11

Cited by

  1. Multifaceted Interactions Between Endophytes and Plant: Developments and Prospects vol.9, pp.1664-302X, 2018, https://doi.org/10.3389/fmicb.2018.02732